Novell
Developer Kit

www.novell.com

‘ NOVELL EDIRECTORY™ CORE
June 2008 SERVICES

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide 13
1 Programming Concepts 15
1.1 ContextHandles. e 15
1.11 Management of Context Handles 16

11.2 Modification of Context Handle Settings 18

113 DCK FLAGS KBY . .ottt e e e e e e 18

114 DCK_CONFIDENCE KeEYot e e e 20

115 DCK_NAME_CONTEXTKeEYt e 20

1.1.6 DCK_LAST_CONNECTION KeY. . . o\ttt 21

117 DCK TREE_NAME KeEYt e e 21

1.1.8 DCK DSl FLAGS KEY . . oottt e e e e e e 21

1.1.9 DCK NAME _FORMKEYot e e e e e 22
1.1.10 DCK_NAME_CACHE_DEPTHKeEY.t e 23

1.1.11 Multi-Threaded Applications i 23

1.2 Buffer Management 24
1.2.1 Buffer Size in eDirectory 24

1.2.2 Initialization Operations for eDirectory InputBuffers 25

1.2.3 eDirectory Buffer Allocation and Initialization Functions 25

1.2.4 eDirectory Input Buffer Functions 25

1.2.5 eDirectory Output Buffer Functions 26

1.3 Read Requests for Object Information. 26
1.3.1 eDirectory List Operations 27

1.3.2 Controlling lterations 27

1.3.3 Retrieving Object Information from the OutputBuffer 28

1.3.4 eDirectory Read Operations i 28

1.3.5 Configuring Results 29

1.3.6 Attribute Value Comparisons.t 30

1.4 Search ReqUESTS 30
1.4.1 Buffers Needed for eDirectory Searches. 31

1.4.2 Search Filter Components. i 32

1.4.3 Sample Search EXpression Trees 34

1.4.4 Retrieving Information from the Result Buffer 36

1.4.5 Search Cleanup.o 36

1.5 Developing in a Loosely Consistent Environment 36
1.5.1 Lo0se CONSIStENCYot e 37

15.2 Disappearing eDirectory Objects. 37

15.3 Disappearing eDirectory Objects: Solutions 38

1.6 Add Object Requests. i e 38
1.7 eDirectory Security and Applications 41
1.8 Authentication of Client Applications 42
1.9 Multiple Tree SUPPOIt.o 43
1.9.1 NLM Applications and Multiple Tree Identities. 43

1.9.2 Client Applications and Multiple Tree Identities. 44

1.10 Effective Rights Function e 44
111 Partition FUNCHONS e 44
1.12 Replica FUNCHONS. 45
1.13 Read Requests for Schema Information 45
1.14 Schema Extension Requests. i e e 47
1.14.1 Attribute Definition Functions. 47

Contents 5

6

1.14.2 Class Definition Functions 47

2 Tasks 49
21 ContextHandle Taskst 49
211 Creatinga ContextHandle 49

21.2 FreeingaContextHandle 50

21.3 Modifying the Context of the ContextHandle 50

214 Reading the Context of the ContextHandle 51

2.2 BUffer Tasks.o 52
221 Preparing eDirectory Input Buffers 52

222 Preparing eDirectory Output Buffers 53

223 Retrieving Results from eDirectory Output Buffers 53

224 Freeing eDirectory Buffers. 53

2.3 Authentication and Connection Tasks 54
2.31 Accessing eDirectory Ping Information L. 54

2.3.2 Authenticating to eDirectory. 54

2.3.3 Establishing Identities to Multiple eDirectory Trees—NLM Platform 55

234 Establishing Identities to Multiple eDirectory Trees—Client Platforms 56

235 Retrieving Addresses of a Connected Server. 57

2.4 ODbJeCt TasKS . ..ottt 57
241 Adding an eDirectory Object 58

242 Comparing Attribute Values 58

24.3 Deleting an eDirectory Object. 59

244 Determining the Effective Rightsofan Object 59

245 Finding the Host Serverof an Object 60

246 Listing Objects in an eDirectory Container 60

247 Modifying an eDirectory Object 61

2.4.8 Adding an Aucxiliary Class to an eDirectory Object 62

249 Reading Attributes of eDirectory Objects 62
2410 Searching eDirectory 63

2.5 Partition and Replica Tasks 65
251 Addinga Replica. 65

252 Changingthe TypeofaReplica. i 65

25.3 Joining Partitions 65

254 Listing Partitions and Retrieving Partition Information. 66

255 Removing Partitions. 66

256 Removing Replicas e 66

25.7 Splitting Partitions 67

26 Schema Tasks i 67
2.6.1 Creating a Class Definition e 67

2.6.2 Creating an Attribute Definition 68

26.3 Deleting a Class Definition. 69

26.4 Deleting an Attribute Definition 69

2.6.5 Listing Containable Classes e, 69

2.6.6 Modifying a Class Definition i 70

26.7 Reading a Class Definition 70

26.8 Reading an Attribute Definition 72

26.9 Retrieving Syntax Names and Definitions 73

3 Functions 75
NWDSAbbreviateName 80
NWDSAbortPartitionOperation e 82
NWDSAAAFIEITOKEN. . . . oo e e e e 84
NWDSAAAODJECt 87
NWDSAddPartition (obsolete—moved from .h file 11/99) 90

NDK: Novell eDirectory Core Services

NWDSAdARepIICa. 91

NWDSAAASEeCUrtYEQUIV.o 93
NW D SAIIOCBUS . . . o 95
NWDSAIIOCFIIEro 97
NWDSAuditGetObjectID (obsolete 06/03)ot e 99
NWDSAuthenticate (obsolete 06/03) 101
NWDSAuthenticateConNn 103
NWDSAuthenticateConnEX 105
NWDSBackupODbjJECt.ot 107
NWDSBeginClassltem 110
NWDSCanDSAuthenticate e 112
NWDSCanonicalizeName. e 114
NWDSChangeObjectPassword 116
NWDSChangePWAEX 119
NWDSChangeReplicaTypeo e 122
NWDSCIStringsMatch 124
NWDSCIloselteration. e 126
NWDSCOMPAreo e e 128
NWDSComputeAttrValSize. 130
NWDSCreateContext (obsolete—moved from .hfile 6/99). 132
NWDSCreateContextHandle e 133
NV D S DEfiNEAro 135
NWDSDEfINECIASS . . . o ottt 137
NWDSDelFIlterToKen 140
NWDSDuplicateContext (obsolete 03/99). e 142
NWDSDuplicateContextHandle 144
NWDSEXtSYNCLISt e 146
NWDSEXISYNCReado 150
NWDSEXISYNCSearch 154
NV D SFreeBUf 158
NWDSFreeContext ot 160
NWDSFreeFiltero 162
NWDSGenerateKeyPairEX 164
NWDSGenerateObjectKeyPair. e 167
NWDSGEetArCOUNt 169
NWDSGetAtrDEfo 171
NWDSGetAtrName 173
NWDSGetAtrVal . .. 175
NWDSGetAttrValFlags o e 177
NWDSGetAttrValModTime 179
NWDSGetBinderyContext. 181
NWDSGetClassDef. e 183
NWDSGetClassDefCount. 185
NWDSGetClassltemo 187
NWDSGetClassltemCount 189
NWDSGetCoNtexXt.ot 191
NWDSGetCountByClassAndName. e 193
NWDSGetCurrentUser 196
NWDSGetDefNameContext e 197
NWDSGetDSIINfOo e 199
NWDSGetDSVerInfo.o 201
NWDSGetEffectiveRights 203

Contents

7

8

NWDSGetMonitoredConnReEf 206

NWDSGEetNDSINfO . ..o 208
NWDSGetObjectCount 210
NWDSGetObjectHostServerAddress 212
NWDSGetObjectName 214
NWDSGetObjectNameANndInfo. 217
NWDSGetPartitionEXtINfo. 220
NWDSGetPartitionEXtINfoPtr 222
NWDSGetPartitionInfo 224
NWDSGetPartitionROOt 226
NWDSGetServerAddresses (obsolete 3/98). 228
NWDSGetServerAddresses?2 230
NWDSGetServerDN e 232
NWDSGetServerName 234
NWDSGetSyntaxCount. 236
NWDSGetSyntaxDef. e 238
NWDSGetSyntaxID. 240
N D SNt BUS. . . . 242
NWDSINSpeCtENtry 244
NWDSJoINPartitionsot 246
NV D SISt . . o ottt e 248
NWDSListAttrsEffectiveRights 251
NWDSListByClassAndName e e 254
NWDSListContainableClasses 258
NWDSListContainers 261
NWDSListPartitions e 264
NWDSListPartitionsExtInfo 267
NV D S OGN .ttt e 270
NWDSLOGINEX . . oottt e e e 272
NV D SLOGINASSEIVET . . . ot 274
NV D S OGOUL . . .ot e e 275
NWDSMapIDTONAME.o e e e e 277
NWDSMapNameTolD. e 279
NWDSModifyClassDef 281
NWDSMOodifyDNo 283
NWDSModifyObjJect o 286
NWDSMOodifyRDN. . . . e 289
NWDSMOVEODECEo 292
NWDSMutateODbjecCto 295
NWDSOpenConnTONDSSEIVErt e e 297
NWDSOpenMonitoredCONNo 299
NWDSOpENStream. o e 301
NWDSPartitionReceiveAllUpdates e 304
NWDSPartitionSendAllUpdates i e 306
NWDSPULAINGME e 308
NWDSPutAttrNameAndVal. e 310
NWDSPULALIVAL. 312
NWDSPUIChaNgeo 314
NWDSPutChangeAndVal 316
NWDSPUtCIassltem e 319
NWDSPUtCIassName 321
NWDSPULFIItEr 323

NDK: Novell eDirectory Core Services

NWDSPuUtSYntaxName 325

NWDSREad 327
NWDSReadAttrDef 330
NWDSReadClassDef 333
NWDSReadNDSINfO. 336
NWDSReadObjectDSIINfO 338
NWDSReadObjectinfo e 340
NWDSReadReferenCeso e 342
NWDSReadSyntaxDef e 346
NWDSREaASYNIAXES . . . o ottt ettt et e 348
NWDSReEIOadD S e e e 351
NWDSREMOVEAIITYPESottt e e e e e e 353
NWDSRemoVeAttrDef 355
NWDSRemoveClassDef. e 357
NWDSRemMOVEODECto 359
NWDSRemovePartition e 361
NWDSReEMOVEREPIICA oo 363
NWDSRemMSeCUrityEQUIV 365
NWDSRepairTimeStampso e e 367
NWDSReplaceAttrNameAbbrev e 369
NWDSReESOIVENGME e 371
NWDSRestoreObject 373
NWDSReturnBlockOfAvailableTrees e e e 376
NWDSScanConnsSFOrTrees e e e e e e e e e 379
NWDSScanForAvailableTrees e e e e 381
NWD S Search 383
NWDSSetContext 387
NWDSSetCurrentUser 389
NWDSSetDefNameContext e 390
NWDSSetMonitoredConnection (obsolete 06/03). i i 392
NWDSSplitPartition. e 394
NWDSSyNCPartition e 396
NWDSSYNcReplicaTOSEIVEr e 398
NWDSSyNcSchema 400
NWDSUnlockConnection (obsolete 06/03). e 402
NWDSVerifyObjectPassword 404
NWDSVErfyPWAEX. oot e e 406
NW D SWHhOAMI . . . e 408
NWGetDefaultNameContext. e 410
NWGetFileServerUTCTime. e e e e e e 412
NWGetNUmMCoNNECioNS. e 414
NWGetNWNeEtVEersion e e e e e e 415
NWGetPreferredConnName e 417
NWIsDSAuthenticated 419
NWWISD S S OIVEr . . . oo 421
NWNetInit e 423
NWINE T ermM .« . e e 425
NWSetDefaultNameContext 427
NWSetPreferredD S Tree e 429

Contents

9

4 Structures 431

ASNT D T L 432
A INfO T L e 433
Back _LinK T . .o 434
Bit S NG T . oo 435
BUT T o e 436
L T 438
Class _INfo_T. ... o 439
EMail AdAress T e e 440
Fax NUMbDEr T .. e e e e e e e e e e 441
Fiter CUrSOr T . . e 442
Filter _NOdE T . . e 443
HOIO T o 445
ND S O SV erSION T . . .o 446
ND S S atsINfO_T .. 447
Net AdAresS T . .o 449
NWDS TimeStamp_To 450
ObjJect ACL T .o 451
Object_INfo T ... e 452
Octet LISt T .. e e e 453
Octet_StriNg T . ..o e 454
Path T 455
Replica Pointer T e e 456
Syntax_INfo_ T . . . 457
TIMEStamMD T . o e 458
Typed _Name T ... 459
UnKnOoWn AT T . o 460
5 Values 461
5.1 Attribute Constraint Flags. 461
5.2 Attribute Value Flags 463
5.3 Buffer Operation Types and Related Functions. o .. 464
5.4 Class Flags 465
5.5 Change Types for Modifying Objects. e 466
56 ContextKeysand Flags. i e e e 467
5.7 Default Context Key Values 469
5.8 DCK_FLAGS BitValues. e 470
5.9 DCK_NAME_FORMValUes.t e e 471
510 DCK_CONFIDENCE BitValues. e 471
511 DCK_DSI_FLAGS Values. . . .« oottt e e e 472
512 DSI_ENTRY_FLAGS Valuesot e 473
5.13 Filter TOKENSo e 474
5.14 Information Types for Attribute Definitions. 475
5.15 Information Types for Class Definitions 476
5.16 Information Types for SearchandRead 476
5.17 Name Space Ty PeS . . .ottt 477
5.18 eDirectory Access Control Rights 477
5.19 eDirectory Ping Flags. e 479
5.20 DSP Replica Information Flags 481
5.21 Network Address TYPeSo ottt e e e e e 482

10 NDK: Novell eDirectory Core Services

5.22 Scope Flagso 483

5.23 Replica TYPES . .ottt 483
524 Replica States 484
525 SyntaxMatching Flags. 486
5.26 Syntax IDso 487
6 eDirectory Example Code 489
6.1 ContextHandle e 489
6.2 Objectand Attribute e 489
6.3 Browsingand Searching e 489
6.4 Batch Modification of Objects and Attributes 490
6.5 Schema 490
A Revision History 491

Contents 11

12 NDK: Novell eDirectory Core Services

About This Guide

This book describes how to access Novell® eDirectory™ services and store information in its tree,
and how to access and modify the information types that it can store. This information is divided
into the following sections:

¢ Chapter 1, “Programming Concepts,” on page 15

¢ Chapter 2, “Tasks,” on page 49

¢ Chapter 3, “Functions,” on page 75

¢ Chapter 4, “Structures,” on page 431

¢ Chapter 5, “Values,” on page 461

¢ Chapter 6, “eDirectory Example Code,” on page 489

+ Appendix A, “Revision History,” on page 491

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see eDirectory Libraries for C (http://
developer.novell.com/ndk/ndslib.htm).

Additional Information
For information about other eDirectory interfaces, see the following guides:
¢ eDirectory Iterator Services (http://developer.novell.com/ndk/doc/ndslib/skds_enu/data/

front.html)

¢ eDirectory Event Services (http://developer.novell.com/ndk/doc/ndslib/dsev_enu/data/
hmwigbwd.html)

¢ eDirectory Technical Overview (http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/
h6tvg4z7.html)

¢ eDirectory Backup Services (http://developer.novell.com/ndk/doc/ndslib/dsbk enu/data/
front.html)

¢ eDirectory Schema Reference (http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/
h4qlmnli.html)

For help with eDirectory problems or questions, visit the eDirectory Libraries for C Developer
Support Forum (http://developer.novell.com/ndk/devforums.htm).

For product information about eDirectory, see the eDirectory Documentation Site (http://
www.novell.com/documentation/edir88/).

About This Guide

13

http://developer.novell.com/ndk/ndslib.htm
http://developer.novell.com/ndk/doc/ndslib/skds_enu/data/front.html
http://developer.novell.com/ndk/doc/ndslib/dsev_enu/data/hmwiqbwd.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk/doc/ndslib/dsbk_enu/data/front.html
http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm
http://www.novell.com/documentation/edir88/

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

14 NDK: Novell eDirectory Core Services

Programming Concepts

This chapter describes programming concepts, how groups of functions interact with each other to
provide the functionality you need to use Novell® eDirectory™ in your applications. You should
already be familiar with eDirectory, its architecture, and its services. For this information, see NDK:
Novell eDirectory Technical Overview.

¢ Section 1.1, “Context Handles,” on page 15

¢ Section 1.2, “Buffer Management,” on page 24

¢ Section 1.3, “Read Requests for Object Information,” on page 26

¢ Section 1.4, “Search Requests,” on page 30

¢ Section 1.5, “Developing in a Loosely Consistent Environment,” on page 36

¢ Section 1.6, “Add Object Requests,” on page 38

¢ Section 1.7, “eDirectory Security and Applications,” on page 41

¢ Section 1.8, “Authentication of Client Applications,” on page 42

¢ Section 1.9, “Multiple Tree Support,” on page 43

¢ Section 1.10, “Effective Rights Function,” on page 44

¢ Section 1.11, “Partition Functions,” on page 44

¢ Section 1.12, “Replica Functions,” on page 45

¢ Section 1.13, “Read Requests for Schema Information,” on page 45

¢ Section 1.14, “Schema Extension Requests,” on page 47

1.1 Context Handles

Most eDirectory functions have a context handle as the first parameter. A context handle is similar
to a directory handle in that it points to a specific location, but it is different in that a directory handle
points to a location in the file system and a context handle points to a location in the eDirectory tree.
As with directory handles, applications can have multiple context handles.

A context handle knows its location in the eDirectory tree by maintaining the distinguished name of
the location. In addition to the context name, the context handle maintains the following types of
information:

+ Tree name

¢ Current connection

+ Name format

+ Settings for dereferencing aliases, working in Unicode, using types, and canonicalizing names.
This section describes the following aspects of context handles:

¢ Section 1.1.1, “Management of Context Handles,” on page 16
¢ Section 1.1.2, “Modification of Context Handle Settings,” on page 18
¢ Section 1.1.3, “DCK_FLAGS Key,” on page 18

Programming Concepts

15

¢ Section 1.1.4, “DCK_CONFIDENCE Key,” on page 20

¢ Section 1.1.5, “DCK_NAME CONTEXT Key,” on page 20

¢ Section 1.1.6, “DCK_LAST CONNECTION Key,” on page 21

¢ Section 1.1.7, “DCK_TREE NAME Key,” on page 21

¢ Section 1.1.8, “DCK_DSI_FLAGS Key,” on page 21

¢ Section 1.1.9, “DCK_NAME FORM Key,” on page 22

¢ Section 1.1.10, “DCK_NAME CACHE DEPTH Key,” on page 23
¢ Section 1.1.11, “Multi-Threaded Applications,” on page 23

For step-by-step instructions, see

¢ “Creating a Context Handle” on page 49
+ “Freeing a Context Handle” on page 50

+ “Modifying the Context of the Context Handle” on page 50

For sample code, see ndscontx.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/
index.htm).

1.1.1 Management of Context Handles

The following functions are used to manage context handles.

Function Description

NWDSCreateContextHandle (page 133) Creates a context handle and initializes it with
default values.

NWDSDuplicateContextHandle (page 144) Creates a copy of an existing context handle and
initializes it with the values of the existing handle.

NWDSFreeContext (page 160) Frees a previously allocated context handle.

When a context handle is created, it is initialized to the following default values:

¢+ DCK FLAGS (DCV_DEREF _ALIASES | DCV_XLATE STRINGS |
DCV_CANONICALIZE NAMES). With these values, the eDirectory libraries dereference
aliases, translate Unicode strings to the local code page, and append the name context to the
object names. The libraries expect applications to submit partial names, relative to the name
context, and in the character set of the local code page. The libraries return partial names, with
the name context stripped off, and in the character set of the local code page.

¢ DCV_NAME CONTEXT. For workstation applications, the name context is the default
eDirectory context used during login. For NLMs, this is the server's bindery context. If multiple
contexts are listed, it is the first context in the list.

¢+ DCK_CONFIDENCE (DCV_LOW_CONF). The default value allows information to be
obtained from all replica types (read-only, read-write, and master).

¢+ DCK _LAST CONNECTION. This key is initialized to no connection (-1).

¢+ DCK TREE NAME. For workstation applications, this is the preferred tree of the workstation.
For NLMs, this is the tree the server belongs to.

16 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

¢+ DCK_DSI FLAGS (DSI_ENTRY_FLAGS | DSI_ OUTPUT FIELDS |
DSI SUBORDINATE COUNT | DSI_MODIFICATION TIME | DSI BASE CLASS |
DSI ENTRY RDN | DSI ENTRY DN). This key determines the type of entry information
that can be obtained about an object. The default value returns information about the type of
object (for example, alias, partition, or container object), the number of objects subordinate to
the specified object, the object's modification timestamp, the base class of the object, the name
of the object (default format is partial name with partial dot form), and the distinguished name
of the object (default format is partial dot form).

¢+ DCK NAME FORM (DCV_NF_PARTIAL DOT). This key specifies the name form; the
default is partial dot.

¢ Name cache depth. This key specifies how many names will be stored in memory. The default
is five.

These settings determine the format of the name that the eDirectory libraries expect eDirectory
functions to use and the format of the name the functions return to the application.

For example, suppose a workstation logs in to the eDirectory tree with a default name context of
“Clerks.Accouting. ACME” and a username of “JRoss.” With these default settings, the libraries
would append “Clerks.Accouting. ACME” to any object name passed as a parameter in an
eDirectory function.

If an “HPPrinter” object exists in a “Printer” container under “Clerks,” the function should use
“HPPrinter.Printer” for the printer's name. A dot should be the delimiter because that is the default
name form.

The following graphic illustrates how these keys interact with their flags, bit masks, or keys.

Figure 1-1 Context Keys Interacting with Flags, bit Masks, and Keys

& | DCK_DEREF_ALIASES

DCK_XLATE_STRINGS

o
- -
-

Context Keys .-~ .

OCK_FLAGS

_--W DCK_LOW _COMF

DCK_CONFIDENCE e
DCK_MED_CONF

DCE_MNAME_CONTEXT DEK_HIGH_CORF

DCK_LAST _CONMNECTION

.| DSI_OUPUT FIELDS

DCK_TREE NAME o F—

DCK_DSI FLAGS DSI_ENTRY_FLAGS
-

DCK NAME FORM .

DCK_NAME_CACHE_DEPTH |™.

4| Dov NF sLasH

DY _NF_PARTIAL_DOT

Since all of these keys can be modified, the next section describes the functions that you use to
manage the context handle settings.

Programming Concepts

17

1.1.2 Modification of Context Handle Settings

The following functions are used to modify the context handle keys and to obtain information about
the context handle and its settings.

NWDSGetContext (page 191) Reads the information about the context.

NWDSSetContext (page 387) Modifies the information maintained by the context handle.

To read the context handle settings or to modify them, you need to understand the context keys.
They are described in greater detail in the following sections.

1.1.3 DCK_FLAGS Key

The DCK_FLAGS key holds a bit mask of flags that can be ORed together. Each flag affects how
the eDirectory libraries return object name information.

DCV_DEREF_ALIASES. This flag determines whether an object name, which references an alias,
returns information about the alias object or the object that it references. The default is to return
information about the referenced object. However, if your application needs to read the values of the
alias's attributes, then this flag needs to be turned off (set to 0).

In search and list operations, this flag determines whether the object, that is submitted as the start
point for the search, can be dereferenced. For example, the eDirectory tree in the figure below has an
alias object, Eng Alias, that references the Engineering container.

Figure 1-2 DCV_DEREF _ALIASES Flag

[Root]

If Eng Alias is submitted as the object for the start of the search or list, it will be dereferenced and
return information about the Engineering container and its subordinate objects.

For search functions, another parameter, usually called searchAliases, determines whether
subordinate objects are dereferenced.

DCV_XLATE_STRINGS. This flag determines the types of strings the eDirectory libraries return
and expect to receive. Natively, eDirectory works in Unicode. However, if this flag is on (set to 1),

18 NDK: Novell eDirectory Core Services

the libraries expect strings in the local code page and translate between Unicode and the local code
page.

If this flag is turned off (set to 0), the libraries do not translate and expect Unicode strings. This can
improve performance.

DCV_TYPELESS_NAMES. This flag determines whether the libraries return names in typeless
(JRoss.HR.ACME) or typeful (CN=JRoss.OU=HR.O=ACME) format. When this flag is off (which
is the default value), the libraries return typeful names. You can either set this flag to the way you
want to display eDirectory names to your user, or you can use name functions to modify the name
before displaying it.

The following functions manipulate the form of the name.

NWDSAbbreviateName (page 80) Converts a name to its shortest, typeless form relative
to a specified name context.

NWDSCanonicalizeName (page 114) Converts an abbreviated name to the canonical form
(fully distinguished, with types).

NWDSRemoveAllTypes (page 353) Removes all attribute types from a distinguished name.

Be aware that the NWDSCanonicalizeName function adds types to the name if the
DCV_TYPELESS NAME flag is off. To add types, it must use the default typing rule that makes
some assumptions about the containers in the eDirectory tree. When applying types, the libraries
make the following assignments:

¢ The most significant (right-most) component is an Organization (O).
¢ The least significant (left-most) component is a Common Name (CN).

¢ All intervening components are Organizational Units (OU).

For example, if you pass in a name such as “JRoss” with a name context of “Engineering. ACME” to
the NWDSCanonicalizeName function, the function returns

“CN=JRoss.OU=Engineering. O=ACME”. The library does not know the correct types to apply to
the container names and cannot look them up; it simply follows the default typing rules.

If the eDirectory tree contains Tree Root, Country, or Locality containers, the types will be
inaccurate. To have the server resolve a typeless name and return a correctly typed distinguished
name, use the NWDSReadObjectDSIInfo (page 338) function and set the DSI flags to return only
the distinguished name.

DCV_CANONICALIZE_NAMES. A name in canonical form is a name that is fully
distinguished; it can have types, but it isn't required to. eDirectory does all of its name processing
with fully distinguished names.

When this flag is clear, the libraries expect input of fully distinguished names and return fully
distinguished names. When this flag is set, the libraries expect input of partial names and append the
name context to the partial name to create a distinguished name. On return values, the libraries strip
off the name context and return partial names. For example:

Name passed in: JRoss
Current Context: HR.ACME
Resulting Name: JRoss.HR.ACME

Programming Concepts

19

The libraries use the following rules when determining how to expand a name:
¢ A period preceding a name prevents the libraries from appending the context to the name. The
libraries assume that such a name is a distinguished name.
¢ For each trailing period, the libraries remove one component from the name context before

appending it to the name.

If you place a period at the beginning of the name passed in, the libraries treat it as a distinguished
name and do not append the context to the end. Here is an example:

Name passed in: .Ppearson.Engineering.Pub.ACME
Current Context: Payroll.HR.Pub.ACME

Resulting Name: Ppearson.Engineering.Pub.ACME

For each period you place at the end of a name, the libraries remove a naming component from the
context before appending the context to the name you passed in. For example:

Name passed in: Ppearson.Engineering..
Current Context: Payrol.HR.Pub.ACME

Resulting Name: Ppearson.Engineering.Pub.ACME

Note that in the two examples the same person is being referenced and both examples use the same
context. Also note that in the first example the name passed in was 30 characters and the second
name passed in was only 22 characters. Both examples resulted in the same name, but they used
different rules to achieve that name.

DCV_DEREF_BASE_CLASS. This flag allows eDirectory to return the base class of the object
the alias references. When this flag is turned off, eDirectory returns the base class of the alias, which
is always the Alias class.

DCV_DISALLOW_REFERRALS. This flag allows eDirectory to refer a request to another server
and the request will follow such referrals until the information is found. If this flag is turned on, the
request must be answered by the first eDirectory agent it is sent to. If this agent does not have a
replica with the information, the request fails.

1.1.4 DCK_CONFIDENCE Key

The DCK_CONFIDENCE key determines where the libraries can obtain eDirectory information.
Most of the time, eDirectory information can be obtained from any type of replica. However, a few
operations, especially partition operations, must be performed on the master replica. You can force
eDirectory to obtain information from the master replica by setting the DCK_CONFIDENCE key to
DCV_HIGH_CONF. Since eDirectory cannot use the first replica that it finds, requesting
information to come only from master replicas can slow down performance.

1.1.5 DCK_NAME_CONTEXT Key

This key determines the NDS context that is added to partial names to make them distinguished
names when the DCV_CANONICALIZE NAME flag is set. If your application changes context,
you need to set this key to the new context.

20 NDK: Novell eDirectory Core Services

1.1.6 DCK_LAST_CONNECTION Key

This key contains the connection that was last used to service an eDirectory request. Since an
eDirectory request can require connections to a server other than the server that first receives the
request, this value changes during the processing of the request.

1.1.7 DCK_TREE_NAME Key

This key contains the name of the eDirectory tree. If your application allows logins to multiple trees,
you should create a context handle for each tree and set this key to that tree's name.

1.1.8 DCK_DSI_FLAGS Key

The DCK_DSI _FLAGS key is a bit mask that determines what entry information is returned about
objects. Some information types, such as DSI CREATION TIMESTAMP or DSI_PARENT ID,
apply to all object types, but some are particular to an object type, such as DSI REPLICA_TYPE,
which applies only to Partition objects. Each of these DSI flags are described in the following
sections.

DSI_OUTPUT_FIELDS. This flag determines what is returned. It is a bit mask of all the other DSI
flags. Only those flags ORed into the bit mask have information returned. The information is
returned in the same order that flags were ORed together.

Not all versions of eDirectory can supply the requested information. If the request goes to an
eDirectory server that cannot supply the information, the server clears the corresponding bit in the
DSI_OUTPUT _FIELDS flag.

Before attempting to read DSI information, you should always read the DSI_ OUTPUT_FIELDS
flag to determine what was actually returned.

DSI_ENTRY _ID. This flag returns the entry ID of the object. All objects in the server's local
eDirectory database have an entry ID that is specific to that database.

DSI_ENTRY_FLAGS. This flag returns information about the state of entry. These identify
significant characteristics about the entry, such as whether the entry is an alias object, a partition
root, a container, a container alias, or an audited entry. All that apply to the entry are ORed together.
For a complete list, see Section 5.12, “DSI_ENTRY FLAGS Values,” on page 473.

DSI_MODIFICATION_TIME. This flag returns the time of the last modification to the entry. The
time is returned as the number of seconds since 12:00 midnight, 1 January 1970. If the modification
time is unknown, returns 0.

DSI_MODIFICATION_TIMESTAMP. This flag returns the timestamp of the last modification of
the entry. A timestamp includes the number of seconds since 12:00 midnight, 1 January 1970 as well
as the replica number where the modification took place and the eDirectory event type that identifies
the type of modification. If the timestamp is unknown, it returns 0.

DSI_REVISION_COUNT. This flag returns the number of times the entry has been modified.

DSI_CREATION_TIMESTAMP. This flag returns the timestamp that indicates when the entry
was created. The timestamp includes the number of seconds since 12:00 midnight, 1 January 1970
as well as the replica number where the creation occurred and an eDirectory event type that indicates
that this is a creation event. If the creation timestamp is unknown, it returns O.

Programming Concepts

21

DSI_BASE_CLASS. This flag returns the base class, or object class, that was used to create the
entry. Although Object Class is an attribute of every class and the eDirectory libraries include
functions to read attribute information, this flag can be used to obtain base class information without
the overhead of a special request to read the Object Class attribute.

DSI_ENTRY_RDN. This flag returns the partial name of the entry, in the format specified by the
DCK _FLAGS and the DCK_NAME FORM keys. The default values for these keys would return
the name of the entry with the name context stripped, in dot form, and without types.

DSI_ENTRY_DN. This flag returns the distinguished name of the entry in the format specified by
the DCK_FLAGS and DCK_NAME FORM keys. The default value for these keys would return the
name in dot form and without types.

DSI_PARENT _ID. This flag returns the entry ID of the entry's parent object.

DSI_PARENT _DN. This flag returns the distinguished name of the entry's parent object in the
format specified by the DCK_FLAGS and DCK_NAME FORM keys. The default value for these
keys would return the name in dot form and without types.

DSI_DEREFERENCE_BASE_CLASS. This flag returns the base class of the object an alias
references if the DCV_DEREF _BASE CLASS flag is set. If this flag is not set, it returns the base
class of the Alias entry, which is always the Alias object class.

DSI_SUBORDINATE_COUNT This flag returns the number of objects that are subordinate to the
entry. If this number is unknown, it returns 0.

DSI_PARTITION_ROOT ID. This flag returns the entry ID of the partitions' root container.

DSI_PARTITION_ROOT_DN. This flag returns the distinguished name of the partition's root
container in the format specified by the DCK_FLAGS and DCK_ NAME FORM keys. The default
value for these keys would return the name in dot form and without types.

DSI_PURGE_TIME. This flag returns the oldest purge time for a Partition object. The time is the
number of seconds since 12:00 midnight, 1 January 1970.

DSI_REPLICA_TYPE. This flag returns the replica's type. See Section 5.23, “Replica Types,” on
page 483 for a list.

DSI_REPLICA_NUMBER. This flag returns the number the replica was assigned when it was
created. This number is unique among the replicas of the partition and is used to identify the replica
where an eDirectory event occurred.

DSI_REPLICA_STATE. This flag returns the current state of the replica. See Section 5.24,
“Replica States,” on page 484 for a list.

1.1.9 DCK_NAME_FORM Key

The eDirectory libraries support two name forms: partial dots and slashes. The partial dot form uses
dots as delimiters, with the root-most object at the right, and does not include the tree name. For
example, the following name uses the default, partial dot form:

JRoss .HR.ACME

The slash form uses back slashes as delimiters, with the root-most object at the left, and includes the
tree name. For example, the same name in the XYZ _tree could be displayed as

\XYZ tree\ACME\HR\JRoss

22 NDK: Novell eDirectory Core Services

The DCK_NAME FORM key determines the input and output form for the eDirectory libraries:

¢ [fslash form is turned on, names are always returned as fully distinguished and must be entered
as fully distinguished. Since slash form names are always distinguished, the libraries ignore the
setting of the DCV_CANONICALIZE NAMES flag.

¢ [f partial dot form is turned on, names can be either partial or fully distinguished, depending on
the setting of the DCV_CANONICALIZE NAMES flag. If this flag is turned on, partial names
can be entered.

The following figure summarizes the interaction of the DCK_NAME FORM key with the
DCV_CANNOICALIZE NAMES flag and the DCV_TYPELESS NAMES flag.

Figure 1-3 The DCK_NAME FORM Key Interacts with the DCV_CANNOICALIZE NAMES Flag and the
DCV_TYPLESS _NAMES Flag

MName Form Canonical Flag On? Typeless Flag On?
Typelass
Yes MN/A Yes Distinguished
Slash Mame
Typeful
MNo N/A MNo Distinguished
Mame
. Typeless
Yes E‘Z:;il Yes Partial
Partial Mame
Dot Typeful
isti ish
No D|5t£ag:‘llz ed No Distinguished
Mame

M/A: Not Applicable

This key also affects a number of the DSI flags that specify the return of the object's RDN, the
object's DN, the DN of the object's parent, and the DN of the partition root.

1.1.10 DCK_NAME_CACHE_DEPTH Key

Name caching is a feature that allows a context handle to store a specified number of names in
memory. This enhancement was made to increase performance of the resolve name operations.
When the cache is full, the oldest name is dropped to add a new name.

To clear the name cache, set the depth of the cache to zero by calling NWDSSetContext (page 387)
(context, DCK_NAME CACHE_DEPTH, &0). To reinitialize name cache, set the cache depth to
the desired value by calling NWDSSetContext (page 387) (context,

DCK _NAME CACHE DEPTH, &5) again.

Currently, the default depth of the name cache is five. To set the depth to a lower value than the
current setting, you must clear the cache and then set it to the desired depth.

1.1.11 Multi-Threaded Applications

Context handles are designed to enable the NWDS functions to operate correctly in a multi-threaded
application. The library stores persistent state information for eDirectory operations in the context
handle. As a result, the functions are thread-safe as long as threads do not share context handles. If

Programming Concepts

23

an application shares context handles among threads, the application is responsible for providing
proper concurrency locks for shared resource.

1.2 Buffer Management

Applications access eDirectory services through functions that might require input and output
parameters in a complex variety of data configurations. For example, some functions require input
parameters of multiple objects with multiple attributes assigned multiple values. Other functions
return parameters that are equally complex.

To accommodate the data requirements of the various functions and to provide a flexible client
interface, most eDirectory functions pass input and output parameters through specially defined
local buffers. Therefore, an understanding of buffer management is essential to developing
eDirectory-aware programs.

In general, buffer management involves the following steps:

. Allocate any input and output buffers required by an operation.

. Initialize any input buffers.

1
2
3. Place any input parameters that define your operation into the input buffer.
4. Execute the request.

5

. After the operation is complete, retrieve any results from the output buffer.

6. Clean up by deallocating buffers you no longer need.

The following sections describe buffer size, initialization, message length, allocation types, required
search buffers, and then list the functions used in buffer management.

¢ Section 1.2.1, “Buffer Size in eDirectory,” on page 24

*

Section 1.2.2, “Initialization Operations for eDirectory Input Buffers,” on page 25

*

Section 1.2.3, “eDirectory Buffer Allocation and Initialization Functions,” on page 25

*

Section 1.2.4, “eDirectory Input Buffer Functions,” on page 25

*

Section 1.2.5, “eDirectory Output Buffer Functions,” on page 26

See Also:

¢ “Preparing eDirectory Input Buffers” on page 52
¢ “Preparing eDirectory Output Buffers” on page 53
¢ “Retrieving Results from eDirectory Output Buffers” on page 53

¢ “Freeing eDirectory Buffers” on page 53

1.2.1 Buffer Size in eDirectory

To allocate an input or output buffer, call NWDSAllocBuf (page 95). All input and output buffers
are of type Buf T. You must specify the size of the buffer to allocate. Rather than trying to
determine the exact buffer size required for a particular operation, it’s usually more convenient to
define a standard buffer length that will be adequate for most operations.

The size of an output buffer affects how the server processes a request. A server will continue
adding data to the buffer until the buffer is full or the request is satisfied. Consequently, if you use a

24 NDK: Novell eDirectory Core Services

very large input buffer, you may wait longer for initial results than if you use a small buffer. At the
same time, a larger buffer may require fewer transmissions than a smaller buffer. The
DEFAULT MESSAGE LEN constant is defined as 4 KB.

1.2.2 Initialization Operations for eDirectory Input Buffers

Only input buffers (also called request buffers) need to be initialized with an operation type. Output
buffers (also called result buffers) do not need to be initialized. Input buffers are used in read and
search operations to restrict the operation to a list of classes or attributes. They are also used when
creating class or attribute definitions and when adding objects to or modifying objects in the
eDirectory tree. See Section 5.3, “Buffer Operation Types and Related Functions,” on page 464 for a
list of operation types for buffer initialization.

Once the buffer is initialized, it is ready to receive data. However, you cannot put data directly into
the buffer. eDirectory has a set of specialized functions for placing the data into the input buffer.

1.2.3 eDirectory Buffer Allocation and Initialization Functions

The following functions are used to allocate input and output buffers and to initialize the input
buffers.

NWDSAIllocBuf (page 95) Allocates a Buf_T structure and the requested number
of bytes.

NWDSInitBuf (page 242) Initializes a Buf_T structure for input.

NWDSFreeBuf (page 158) Destroys a Buf_T structure and frees the memory

allocated to it.

1.2.4 eDirectory Input Buffer Functions

The following functions are used to set up the input or request buffers with the information that
limits the scope of the request from all items of a type to the items listed in the request buffer.

NWDSBeginClassltem (page 110) Begins the insertion of a class definition into an input
buffer.

NWDSPutAttrName (page 308) Inserts the name of an attribute into an input buffer.

NWDSPutAttrVal (page 312) Inserts an attribute value into an input buffer.

NWDSPutAttrNameAndVal (page 310) Inserts the name of an attribute and its value into an
input buffer.

NWDSPutChange (page 314) Inserts a change record into an input buffer.

NWDSPutChangeAndVal (page 316) Inserts a change record and an attribute value into an
input buffer.

NWDSPutClassltem (page 319) Inserts a class item into an input buffer.

NWDSPutClassName (page 321) Inserts the name of an object class into an input buffer.

NWDSPutSyntaxName (page 325) Inserts the name of a syntax into an input buffer.

Programming Concepts

25

NWDSPutFilter (page 323)

Inserts a search filter expression tree into an input
buffer.

1.2.5 eDirectory Output Buffer Functions

The following functions are used to retrieve information from output or result buffers.

NWDSComputeAttrValSize (page 130)

NWDSGetAttrCount (page 169)
NWDSGetAttrDef (page 171)
NWDSGetAttrName (page 173)

NWDSGetAttrVal (page 175)
NWDSGetClassDef (page 183)
NWDSGetClassDefCount (page 185)

NWDSGetClassltem (page 187)

NWDSGetClassltemCount (page 189)

NWDSGetObjectCount (page 210)
NWDSGetObjectName (page 214)
NWDSGetPartitionInfo (page 224)

NWDSGetServerName (page 234)

NWDSGetSyntaxCount (page 236)

NWDSGetSyntaxDef (page 238)

Returns the size of the next attribute value in a result
buffer.

Returns the number of attributes in a result buffer.
Returns the next attribute definition in a buffer.

Returns the next attribute and the number of associated
values in a result buffer.

Returns the next value of an attribute in a result buffer.
Returns the next class definition in a result buffer.

Returns the number of class definitions in a result
buffer.

Returns the next item of a class item list in a result
buffer.

Returns the number of items in a class item list in a
result buffer.

Returns the number of objects in a result buffer.
Returns the next object name in a result buffer.

Returns the next partition information structure in a
result buffer.

Returns the name of the server and the number of
partition names in a result buffer.

Returns the number of syntax definitions in a result
buffer.

Returns the next syntax definition in a result buffer.

1.3 Read Requests for Object Information

The purpose of eDirectory is to store information in the form of objects that can be accessed easily
across the network. eDirectory provides functions for

+ Listing objects

+ Reading an object's attributes, attribute values, and extended information

¢ Comparing attribute values

26 NDK: Novell eDirectory Core Services

This section describes how to determine what objects are available and how to retrieve the
information stored in them. For information on reading schema definitions, see Section 1.13, “Read
Requests for Schema Information,” on page 45.

¢ Section 1.3.1, “eDirectory List Operations,” on page 27

¢ Section 1.3.2, “Controlling Iterations,” on page 27

¢ Section 1.3.3, “Retrieving Object Information from the Output Buffer,” on page 28

¢ Section 1.3.4, “eDirectory Read Operations,” on page 28

¢ Section 1.3.5, “Configuring Results,” on page 29

¢ Section 1.3.6, “Attribute Value Comparisons,” on page 30
For sample code, see the following:

¢ ndsbrows.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
¢ ndsreada.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
+ readinfo.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

1.3.1 eDirectory List Operations

Before you can extract information from an object, you must know what objects are available. That
is the purpose of list functions. Essentially, list functions return a list of objects that meet certain
conditions.

NWDSList (page 248) Lists the objects that are subordinate to a
specified object.

NWDSListByClassAndName (page 254) Lists objects of a particular object class and/or
object name that are subordinate to a specified
object.

NWDSListContainers (page 261) Lists container objects that are subordinate to a

specified object.

NWDSExtSyncList (page 146) Lists the immediate subordinates of an object
placing restrictions on the names, classes,
modification times, and object types of the
subordinates.

Each list function provides a method for restricting the list so that it does not include every object in
the eDirectory database. Even restricted, many of these functions return more information than the
output buffer can hold. These functions use an iteration handle. See the next section for information
on using the handle and retrieving all the information.

1.3.2 Controlling Iterations

The iterationHandle parameter controls the retrieval of output data that is larger than the output
buffer pointed to by the subordinates parameter in the NWDSList function. Several eDirectory
functions (for example, NWDSRead, NWDSReadReferences, and NWDSSearch) use an iteration
handle, and they all called it an iterationHandle parameter (the output buffer name varies with the
function). Before the initial call to an iterative function, set the contents of the iteration handle
pointed to by the iterationHandle parameter to NO_MORE_ITERATIONS.

Programming Concepts

27

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

When the function returns from its initial call, if the output buffer holds the complete results, the
value of iterationHandle is set to NO_MORE _ ITERATIONS. If the iteration handle is not set to
NO_ MORE ITERATIONS, make another call to the function to obtain another portion of the
results. When the results are completely retrieved, the value of the iteration handle is once more set
to NO_ MORE ITERATIONS.

If you want to end an iterative operation before the complete results have been retrieved, call
NWDSCloselteration (page 126) to free memory associated with the operation.

1.3.3 Retrieving Object Information from the Output Buffer

Since there is no way to know what a read or list function returns to an output buffer, most of these
functions have specialized functions for retrieving the data from the buffer. For example, the
NWDSList function returns a list of objects. You would use the following functions to retrieve the
information from its output buffer:

NWDSGetObjectCount Returns the number of objects in the buffer.

NWDSGetObjectName Returns a name of an object in the buffer. Must be
called for each object.

If the function returns other information, such as attributes or attributes and values, other functions
are provided to find out how many attributes are associated with the object or how many values are
associated with an attribute.

1.3.4 eDirectory Read Operations

When you read eDirectory objects, you are actually talking about retrieving the information that is
stored mainly as attributes. For example, a User object could have attributes that include the user’s
Surname, Email Address, Title, or Telephone Number attributes. However, the eDirectory database
maintains other information about an object, such as when it was created and last modified. You can
use the following functions to read information about the object, its attributes, and extended
information.

NWDSRead (page 327) Reads the object's attribute information. This is
configurable and may include attribute names
only, attributes and values, effective privileges,
attribute value flags, and attribute creation and
modification timestamps. For more information,
see Section 5.16, “Information Types for Search
and Read,” on page 476.

NWDSReadObjectinfo (page 340) Reads object information not stored in the
attributes of the object. This includes the base
class used to create the object, class flags, the
modification time, and the number of objects that
are subordinate to this object.

NWDSEXxtSyncRead (page 150) Reads values from one or more attributes of the
specified object, allowing restrictions on
modification time.

28 NDK: Novell eDirectory Core Services

NWDSReadObjectDSlInfo (page 338) Returns DSI object information not stored in the
attributes of an object.This is configurable and
may include information such as object creation
and modification timestamps, subordinate object
count, and the entry ID of the parent object. If the
object is a replica, it may return the entry ID of the
partition's root entry, the replica type, purge time,
and replica number. For more information, see
Section 5.6, “Context Keys and Flags,” on
page 467.

NWDSReadReferences (page 342) Searches all the replicas on a particular server
and returns any objects that contain attributes that
reference the specified object. This function can
be configurable to also return attribute values. For
more information, see Section 5.16, “Information
Types for Search and Read,” on page 476

NWDSReadNDSInfo (page 336) Reads eDirectory server information from the
server the connection handle specifies. This is
function can be configurable to return the
following information: the number of levels the
server is located from the root container,
eDirectory version number, OS version, OS name,
current UTC time of the server, and the server's
eDirectory tree. For more information, see
Section 5.19, “eDirectory Ping Flags,” on
page 479.

1.3.5 Configuring Results

NWDSRead (page 327) is a representative of eDirectory functions that are configurable. (Others
include NWDSSearch (page 383), NWDSReadClassDef (page 333), and NWDSReadAttrDef
(page 330).) These functions let you configure the results to be returned.

The eDirectory functions use two methods to configure return results: function parameters and
context handle flags.

Function Parameters. Function parameters usually include an infoType parameter that specifies
the type of information to return, a boolean parameter that specifies all or only listed items, and a
parameter that contains the list of the requested items. For example, the NWDSRead function uses
an infoType parameter to specify what attribute information to return, an allAttrs parameter to
specify whether all attributes are returned or only specified attributes, and an attrNames parameter
which is used to list specific attributes.

If the allAttrs parameter is TRUE, eDirectory returns information for all attributes of the object and
the attrNames parameter is ignored. Therefore, the attrNames parameter should be set to NULL. If
the allAttrs parameter is FALSE, eDirectory returns the attributes named in the input buffer, which is
pointed to by the attrNames parameter.

If the allAttrs parameter is FALSE and the attrNames parameter is NULL, no attribute information is
returned. However, you can use the return value of the NWDSRead (page 327) function to
determine whether the object exists or whether access to the object is allowed.

Programming Concepts

29

Results are returned in an output buffer that must be allocated by the application. Depending on the
size of the output buffer and the amount of information returned, you may need to call a function
several times to retrieve all the results.

Context Handle Flags. The flags configure the context handle. Since most eDirectory functions
have a context handle parameter, most eDirectory functions are influenced by configuration changes
to the context handle. For more information on configuring the context handle, see Section 1.1,
“Context Handles,” on page 15.

1.3.6 Attribute Value Comparisons

NWDSCompare (page 128) compares a given value with the values assigned to a specified attribute.
For example, you could ask eDirectory to compare whether the Member attribute of a particular
group is equal to the name of some User object. If the comparison is TRUE, the user is a member of
the group.

NWDSCompare can be a useful alternative to reading an object’s attributes, since it requires less
effort on your part to examine the results of the request. Also, depending on your access control
rights, you may be able to perform a comparison when you can’t read the information directly.

You initialize buf for a DSV_COMPARE operation and then put an attribute name and value into the
buffer. If the proposed value is found, matched returns TRUE; otherwise, matched returns FALSE.

1.4 Search Requests

eDirectory provides a powerful and useful searching capability that allows you to retrieve
information based on your specified searching criteria. For example, you can perform a search that
allows your application to

¢ Find all users in the HR department who have a salary above 35,000

¢ Find all the printers that are located on the third floor
A search request must include not only search criteria, but also the area to be searched and the
amount of information to be returned for each matching object. The sections below describe the
following aspects of setting up search requests:

¢ Section 1.4.1, “Buffers Needed for eDirectory Searches,” on page 31

¢ Section 1.4.2, “Search Filter Components,” on page 32

¢ Section 1.4.3, “Sample Search Expression Trees,” on page 34

¢ Section 1.4.4, “Retrieving Information from the Result Buffer,” on page 36

¢ Section 1.4.5, “Search Cleanup,” on page 36

Remember, if you are creating a client application, you must initialize the Unicode table with either
the NWCallsInit or the NWInitUnicodeTables function before starting the search.

Also, you must have a valid context handle that you have set to the container in the eDirectory tree
from which you want the search to begin. The context handle's keys and flags determine how the
search handles aliases and how object names are returned. For more information, see Section 1.1,
“Context Handles,” on page 15.

For a code example, see ndssearc.c (http://developer.novell.com/ndk/doc/samplecode/
ndslib_sample/index.htm).

30 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

1.4.1 Buffers Needed for eDirectory Searches

The NWDSSearch (page 383) function requires three buffers: two input buffers (called NameBuffer
and FilterBuffer in this example) and an output buffer (called ResultBuffer). The purpose of these
buffers is summarized in the list that follows.

NameBuffer Restricts the search results to certain attributes
only. A Name Buffer is not required if you want to
return all attribute information or no attribute
information.

FilterBuffer Contains the search expression. If no filtering is
needed, construct a filter equivalent to
objectclass="*.

ResultBuffer Stores the search results.

The FilterBuffer determines what eDirectory searches for. The NameBuffer determines what
information is returned about the objects that match the search criteria. The ResultBuffer stores this
information.

You need to allocate memory space for all three buffers and verify that memory is allocated
successfully. The following code segment demonstrates how this is done. The data structure for
these buffers is Buf T, which is defined in nwdsbuft.h.

retcode = NWDSAllocBuf (DEFAULT MESSAGE LEN, &NameBuffer) ;

retcode NWDSAllocBuf (DEFAULT MESSAGE LEN, &FilterBuffer);

retcode = NWDSAllocBuf (DEFAULT MESSAGE LEN, &ResultBuffer);

Since NameBuffer and FilterBuffer are input buffers, they need to be initialized. The output buffer
does not need to be initialized.

The following code initializes NameBuffer to the DSV_SEARCH operation.
retcode = NWDSInitBuf (context, DSV _SEARCH, NameBuffer):;

The requested attributes should be stored in NameBuffer. The following code makes a request to
return a match when the Surname and Telephone attributes have values.

retcode = NWDSPutAttrName (context, NameBuffer, "Surname");
retcode = NWDSPutAttrName (context, NameBuffer, "Telephone");

FilterBuffer is initialized to the DSV_SEARCH_FILTER operation:
retcode = NWDSInitBuf (context, DSV_SEARCH FILTER, FilterBuffer);

Finally, you should allocate a filter cursor which initializes the cursor to the current insertion point.
The data structure for the filter cursor is Filter Cursor T, which is defined in nwdsfilt.h.

retcode = NWDSAllocFilter (&FilterCursor);

1.4.2 Search Filter Components

You search for information in eDirectory by first building a search filter and then putting the filter
into the filter buffer. The search filter describes the set of conditions that satisfy the search. To create
a search filter, use the following functions:

NWDSAIlocFilter (page 97) Allocates space for the filter.

Programming Concepts

31

NWDSAddFilterToken (page 84) Adds search criteria to the allocated filter.

NWDSPutFilter (page 323) Places the finished search filter into an input filter buffer. This
function normally frees the space that has been allocated for the
filter.

NWDSFreeFilter (page 162) Frees the space allocated for the filter if the NWDSPutFilter

(page 323) function is not called or fails.

When you allocate a search filter by calling the NWDSAllocFilter (page 97) function, you receive a
filter cursor. The filter cursor is initialized to the current insertion point. It is empty until you add
search filter information. The cursor is used as input as you add the search filter information.

A search filter is made up of a tree of filter nodes. Each node consists of the following three parts:

+ Token
+ Value
¢ Syntax

Token. The token determines what can be in the other parts of the node. A token can be one of the

following:

FTOK_ANAME Signals that an attribute name is in the node.

FTOK_AVAL Signals that an attribute value is in the node.

Relational Operator Usually comes before an attribute name or value
node and signals how the search treats the
following node. For example, signals whether the
search is looking for a value equal to or greater
than the following node.

Logical Operator Usually comes before an attribute name or value
node and signals how the search treats the
following node. For example, signals whether the
next node is another condition that must be met or
whether the condition is an either one or the other
relationship.

FTOK_END Signals the end of the search filter.

Value. Value only applies when the token is FTOK_ANAME or FTOK_AVAL. When one of these
is the token, the value specifies the name of the attribute or the value, respectively. For all other
tokens, value must be set to NULL.

Syntax. Syntax only applies where the token is FTOK_ANAME or FTOK AVAL. Otherwise, it
must be set to 0 (zero). When the node contains an attribute value or name, the syntax contains the
syntax ID of the attribute. Use the NWDSGetSyntaxID (page 240) function to obtain the syntax ID.

Logical Operators. The logical operator tokens express logical relationships among attribute value
assertions. The following table shows the logical operators and the conditions that test TRUE for
each.

32 NDK: Novell eDirectory Core Services

Token Value Comment

FTOK_OR 1 TRUE if either subordinate node is true.

FTOK_AND 2 TRUE only if both subordinate nodes are
true.

FTOK_NOT 3 TRUE if the node is false.

FTOK_LPAREN 4 Left parenthesis.

FTOK_RPAREN 5 Right parenthesis.

You can control precedence among the logical operators by inserting tokens that act as parentheses.
In the absence of parentheses, the FTOK _AND operator takes precedence over the FTOK OR
operator, and the FTOK_NOT operator takes precedence over both.

Relational Operators. A relational operator asserts something about an attribute (for example, the
attribute is present or its value is greater than 100). The truth of a relational operator is evaluated
with the matching rules associated with the attribute’s syntax. A relational operator must be
followed by a node that asserts the test case, for example an FTOK_ANAME or FTOK AVAL.

The following table shows the relational operators and the conditions that test TRUE for each.

Token

Value

Comment

FTOK_EQ

FTOK_GE

FTOK_LE

FTOK_APPROX

7

10

TRUE only if the attribute’s value is equal to the
asserted value. Must be followed by a FTOK_AVAL
node that contains the value.

For example, to set up a search where the attribute
must equal an integer value of 5, use the following node
expressions:

FTOK_EQ, NULL, 0
FTOK_AVAL, "5", SYN_INTEGER

TRUE only if the attribute’s value is greater than or
equal to the asserted value. Must be followed by a
FTOK_AVAL node that contains the value. See
FTOK_EQ for a sample syntax.

TRUE only if the relative ordering places the asserted
value before any of the attribute’s values. Must be
followed by a FTOK_AVAL node that contains the
value. See FTOK_EQ for a sample syntax.

TRUE only if the value of the attribute matches the
asserted value. If the attribute syntax does support
approximate match, this operator matches for equality.
Must be followed by a FTOK_AVAL node that contains
the value. See FTOK_EQ for a sample syntax.

Programming Concepts

33

Token Value Comment

FTOK_PRESENT 15 TRUE only if the named attribute is present in the entry.
Must be followed by a FTOK_ANAME node that
contains the attribute's name.

For example, to set up a search where the object must
have a Given Name attribute, use the following node
expressions:

FTOK_PRESENT, NULL, 0
FTOK_ANAME, "Given Name", SYN_CI_STRING

FTOK_RDN 16 TRUE only if the object’s Relative Distinguished Name
matches the asserted value. Must be followed by a
FTOK_ANAME node that contains the RDN.

May be used in a search without authentication.

For example, to set up a search that returns all objects
that start their name with D, use the following node
expressions:

FTOK_RDN, NULL, 0
FTOK_ANAME, "D*", SYN_DIST_NAME

FTOK_BASECLS 17 TRUE only if the object belongs to the asserted base
class. Must be followed by a FTOK_ANAME node that
contains the name of the base class.

May be used in a search without authentication.

For example, to set up a search where the object must
be a Group object, use the following node expressions:

FTOK_BASECLS, NULL, 0
FTOK_ANAME, "Group", SYN_CLASS_NAME

FTOK_MODTIME 18 TRUE only if the modification time stamp is greater than
or equal to the asserted value.

FTOK_VALTIME 19 TRUE only if the creation time stamp is greater than or
equal to the asserted value.

You can use wildcards to create relational assertions for string values. The wildcard character is the
asterisk (*). Use the back slash escape character to escape the asterisk (*) or to escape the back
slash itself (\\).

1.4.3 Sample Search Expression Trees

The nodes in a search filter combine to form an expression tree. To build the tree, add each node by
calling NWDSAddFilterToken (page 84).

As an example, suppose you want to search for all User objects whose surname begins with “Sm.” If
you were expressing this criteria as a string, it would look like this:

Base Class=User AND Surname=Sm¥*

34 NDK: Novell eDirectory Core Services

To create the expression tree, think of each element as corresponding to a node in the tree. The
sequence for adding the nodes is the same as if you were processing the string from left to right. You
add one node for each element and add one node to signal the end:

Element Node Expression

Object's Base Class (FTOK_BASECLS, NULL, 0)

User (FTOK_AVAL, "User", SYN_CLASS_NAME)
AND (FTOK_AND, NULL, 0)

Surname (FTOK_ANAME, "Surname", SYN_CI_STRING)

= (FTOK_EQ, NULL, 0)
Sm* (FTOK_AVAL, "Sm*", SYN_CI_STRING)
(FTOK_END, NULL, 0)

Once you form a search expression, you build the expression tree by calling the
NWDSAddFilterToken (page 84) function to add each node to the tree. Each token represents a
node on the expression tree:

The following example demonstrates how to build a search filter that looks for user objects with a
Surname not equal to “brown.” It starts with a string expression for the filter.

Expression:
NOT (Surname EQ "brown")

Code Example:
NWDSAllocFilter (&FilterCursor) ;
NWDSAddFilterToken (FilterCursor, FTOK NOT, NULL,OQ);
NWDSAddFilterToken (FilterCursor, FTOK LPAREN, NULL,OQ);
NWDSGetSyntaxID (context, "surname", &syntaxID) ;
NWDSAddFilterToken (FilterCursor, FTOK ANAME, "surname", syntaxID);
NWDSAddFilterToken (FilterCursor, FTOK EQ, NULL,O0);
NWDSAddFilterToken (FilterCursor, FTOK AVAL, "brown", syntaxID);
NWDSAddFilterToken (FilterCursor, FTOK RPAREN, NULL,O0);
NWDSAddFilterToken (FilterCursor, FTOK END,NULL,O0);

After you have added all of the filter tokens to the cursor, your next task is to store the filter
expression in the filter buffer.

NWDSPutFilter (context, filterBuffer, FilterCursor, FreeValuePointer);

The FreeValuePointer parameter can be passed either as NULL or as a pointer to a function that
frees the attribute values.

If the NWDSPutFilter function succeeds, the FilterCursor is automatically freed. If the
NWDSPutFilter function fails, you should call the NWDSFreeFilter function to free the
FilterCursor. Do not call the NWDSFreeFilter function when the NWDSPutFilter function succeeds
or you will crash your program.

Once you have put the search filter in the filter buffer, you are ready to start the search by calling the
NWDSSearch (page 383) function.

Programming Concepts

35

1.4.4 Retrieving Information from the Result Buffer

When the search completes, you cannot just read the information. You must retrieve the information
from the result buffer. Remember to pull out all the information you requested, whether you need it
or not. Use the infoType, allAttrs, and attrNames parameters in the NWDSSearch function to control
what is returned. The attrNames parameter has been called the NameBuffer in the previous sections.

If you requested attribute names and values, you cannot retrieve just attribute names. The failure to
pull out the attribute values makes it impossible to retrieve the rest of the attribute names. Use the
following functions:

NWDSGetObjectCount Returns the number of objects whose
information is stored in the result buffer.

NWDSGetObjectName Returns the name of the current object and the
count of attributes associated with the object.

NWDSGetAttrName Returns attribute's name and the number of
values associated with the attribute.

NWDSComputeAttrValSize Returns the size of the attribute's value. This
function is only required if you don't know the
size of the attribute.

NWDSGetAttrVal Returns the attribute's value. Must be called for
each value associated with the attribute.

For each object in the result buffer, you must retrieve all the attributes, and all the values for each
attribute, before you can retrieve information about the next object in the result buffer.

A search request can return more information than can fit in the result buffer. To retrieve all the
information, you need to call the NWDSSearch function repeatedly until the iterationHandle
parameter is equal to NO_MORE_ITERATIONS. For more information on iteration handles, see
“Controlling Iterations” on page 27.

1.4.5 Search Cleanup

After you have retrieved all the information you need from the result buffer, you should clean up all
the buffers you allocated. Use the following functions:

NWDSFreeBuf (FilterBuffer)
NWDSFreeBuf (ResultBuffer)
NWDSFreeBuf (NameBuffer)
NWDSLogout (context)
NWDSFreeContext (context)
NWFreeUnicodeTable ()

1.5 Developing in a Loosely Consistent
Environment

eDirectory is described as a loosely consistent environment, which means that there is no guarantee
that all replicas hold the same data at any one moment in time. In other words, partition replicas are

36 NDK: Novell eDirectory Core Services

not updated instantaneously, and a change made to one replica must be synchronized with other
replicas.

The synchronization interval is established by the network administrator and can be as short as one
second or as long as five minutes.

For a developer who is new to the eDirectory environment, this can present many new challenges. A
program that works well in the test environment can suddenly become unreliable when installed on
a real network. A program that seems to work on a small network might not work at all on a large,
busy network. Taking time now to consider some of the implications of working in a loosely
consistent environment can save many hours of grief later. The following topics detail some things
you need to consider:

+ Section 1.5.1, “Loose Consistency,” on page 37
¢ Section 1.5.2, “Disappearing eDirectory Objects,” on page 37
¢ Section 1.5.3, “Disappearing eDirectory Objects: Solutions,” on page 38

1.5.1 Loose Consistency

Because the eDirectory database must synchronize replicas, not all replicas hold the latest changes at
any given time. This concept is referred to as loose consistency, which simply means that the
partition replicas are not updated instantaneously. In other words, as long as the database is being
updated, the Directory is not guaranteed to be completely synchronized at any moment in time.
However, during periods in which the database is not updated, it will synchronize completely.

Loose consistency has the advantage of allowing eDirectory servers to be connected to the network
with different types of media. For example, a company might connect parts of its network by using a
satellite link. Data travelling over a satellite link experiences transmission delays, so any update to
the database on one side of the satellite link is delayed in reaching the database on the other side of
the satellite link. However, these transmission delays do not interfere with the normal operation of
the network because the database is loosely consistent. The new information arrives over the
satellite link and is propagated through the network at the next synchronization interval.

Another advantage to loose consistency becomes apparent when communication problems cause a
number of the servers on a network to become unavailable. Any changes made to eDirectory during
the time that the servers were out of operation are not lost. When the problem is resolved, the
replicas on the affected servers receive updates.

1.5.2 Disappearing eDirectory Objects

eDirectory guarantees a loosely consistent Directory, meaning that changes made to one replica may
take time to synchronize with all other replicas. It is possible that a user or other object may access
one of these other replicas before these replicas receive the updated information. For example, a
program might create an object in the eDirectory tree and then collect the data it needs to modify the
object’s attributes. The operations used to gather the data might change the context variable that
points to the specific replica where the object was created.

Now that the program has the data it needs, the program will call NWDSModifyObject (page 286),
which then walks the tree to find the partition holding the object. If the replica it contacts has not yet
received the information it needs to create the object, the operation will return a

NO _SUCH_ENTRY (-601) error.

Programming Concepts

37

1.5.3 Disappearing eDirectory Objects: Solutions

There are several ways to avoid or correct the problem of disappearing objects. The simplest
solution is to wait until after the next synchronization interval. If you don’t want to wait, you could
call NWDSSyncPartition (page 396), which signals the synchronization engine to update the
specified partition without waiting for the next synchronization time. This function has four input
parameters: the context handle, the name of the server where the partition resides, the name of the
partition root, and the number of seconds to wait before beginning the update.

Before calling NWDSSyncPartition, you should call NWDSGetPartitionRoot (page 226) to get the
name of the partition root. It requires a context handle and the name of the object in the partition,
and it returns the name of the partition root. The following code segment shows how to make these
calls:
ccode = NWDSGetPartitionRoot (context, objectName, partitionRoot);
ccode = NWDSSyncPartition (context, serverName, partitionRoot, 0);
if (ccode)

printf ("Error, sync partition failed. %d\n", ccode);

Another solution would be caching the contents of the context variable called
DCK_LAST CONNECTION immediately after creating the object. This variable contains the
name of the server where you created the object.

You might also create a separate context handle for operations that deal with other objects. This
would ensure that the context handle for the object that was just added would not be changed.

There is one other possible solution to this problem, which might work well in some situations. The
partition root object, as a member of the Partition class, has a Replica attribute, which is a
multivalued attribute that contains a list of servers that store a replica of the partition. After reading
the Replica attribute of the partition Root object, you could attempt to read the object you are
looking for on each of the servers that contain a replica of that partition until you find the object.
Note that this solution does not scale well. On large networks with many replicas of a single
partition, this process could take more time than it would save.

1.6 Add Object Requests

The NWDSAddObject (page 87) function is used to add nodes to an NDS™ directory. If those nodes
are container class objects, they can subsequently have objects attached to them. When calling this
function, it is important to know the context of the object and the name you are going to give it, and
to have a buffer prepared containing all required data for the object. The NWDSAddObject function
has the following syntax:
NWDSCCODE N_API NWDSAddObject (
NWDSContextHandle context, /* (IN) Indicates the
eDirectory context
for the request.*/

pnstr8 *objectName, /* (IN) Points to the name
of the object to be
added. */

pnint ptr *iterationHandle, /* (IN) */

nbool8 more, /* (IN) */

pBuf T objectInfo); /* (IN) Points to a request

buffer containing the
attributes and values for
the new object. */

38 NDK: Novell eDirectory Core Services

The context and objectName parameters are fairly self-explanatory. The objectInfo parameter points
to a buffer, which is set up using NWDSAllocBuf and NWDSInitBuf.

The NWDSAllocBuf (page 95) function is used to allocate an eDirectory buffer. This buffer can be
of varying sizes, depending on your needs and preferences. However, Novell® has defined in
nwdsdc.h two constants that are typically used with the size parameter of this function:
DEFAULT MESSAGE _LEN (4069) and MAX MESSAGE LEN (64512). The NWDSAllocBuf
(page 95) function has the following syntax:
NWDSCCODE N _API NWDSAllocBuf (
size t size, /* (IN) 1Indicates the number of bytes to
allocate to the buffer.*/
ppBuf T buf); /* (OUT) Points to an Buf T containing the
memory allocated for the buffer.*/

The NWDSInitBuf (page 242) function is used to initialize an eDirectory buffer for an eDirectory
request. Output buffers do not need to be initialized. For example, if you were calling NWDSRead
and wanted all of the information for a particular object, you would not need to initialize a buffer. If,
however, you wanted to request only specific information (a specific attribute), you would have to
initialize a request buffer.

The NWDSInitBuf function has the following syntax:
NWDSCCODE N _API NWDSInitBuf (

NWDSContextHandle context, /* (IN) Indicates the eDirectory
context for the request.*/
nuint32 operation, /* (IN) Indicates the eDirectory

operation for which
the buffer is being
initialized.*/

pBuf T buf) ; /* (IN) Points to the buffer being
initialized.*/

When calling NWDSInitBuf (page 242), you must specify the context handle and the buffer. You
must also specify the intended use (allocation type) of the buffer in the operation parameter. See
Section 5.3, “Buffer Operation Types and Related Functions,” on page 464 for a list of operation
types. For the NWDSAddODject function, the operation type is DSV_ADD_ENTRY.

After the buffer has been created and initialized, you are ready to add the information to the buffer to
create the new object. This is done by calling the NWDSPutAttrName (page 308) and
NWDSPutAttrVal (page 312) functions. When you fill the buffer, you create a structure that
logically looks something like this: attribute name — attribute value — attribute name — attribute
value —.... Use alternating calls to NWDSPutAttrName and NWDSPutAttrVal. The following code
segment demonstrates how you might use these functions before adding a new user.
ccode=NWDSPutAttrName (dContext, inBuf, "Object Class");

/* error checking goes here */
ccode=NWDSPutAttrval (dContext, inBuf, SYN DIST NAME, "User");

/* error checking goes here */
ccode=NWDSPutAttrName (dContext, inBuf, "Surname") ;

/* error checking goes here */
ccode=NWDSPutAttrVval (dContext, inBuf, SYN CI STRING, "Smith");

/* error checking goes here */

The NWDSPutAttrName (page 308) function has the following syntax:

NWDSCCODE N APT NWDSPutAttrName (
NWDSContextHandle context, /* (IN) Indicates the NDS context

Programming Concepts

39

for the request.*/
pBuf T buf, /* (IN) Points to the request
buffer in which to store
the attribute name.*/
pnstr8 attrName); /*(IN) Points to the attribute
name to store in the
request buffer.*/

The NWDSPutAttrVal (page 312) function has the following syntax:
NWDSCCODE N_API NWDSPutAttrVal (

NWDSContextHandle context, /* (IN) Indicates the NDS context
for the request.*/

pBuf T buf, /* (IN) Points to the request
buffer being prepared.*/

nuint32 syntaxID, /* (IN) Indicates the data type
of the attribute value.*/

nptr attrval); /* (IN) Points to the attribute

value to be stored in the
request buffer.*/

The syntaxID parameter contains the data type of the attribute value. This data type is defined for
each attribute in “Base Attribute Definitions”. For instance, for the Object Class attribute, the
sample code inputs the value User and the type SYN_DIST NAME. The attribute values and syntax
IDs are found in the “Attribute Syntax Definitions”. If you are trying to add a User, for example,
“Base Object Class Definitions” defines the object “User”. These definitions (in NDK: Novell
eDirectory Schema Reference) list all of the mandatory attributes as well as the optional attributes.

Next, for each of the attributes you want to set, go to “Base Attribute Definitions” which contains an
entry for each attribute type; for example, the “CN (Common Name)” attribute. The definitions
specify the syntax (for CN, this is Case Ignore String).

“Attribute Syntax Definitions” defines the “Case Ignore String”syntax. This gives you not only the
information for the syntaxID, or SYN_CI_STRING, but also the form that this attribute takes; in this
case, a character pointer. Some attributes take the form of more complex structures.

The buffer must include the attribute name and its value for all mandatory attributes. Names and
values for optional attributes can be added to the buffer or added after the object is created.

NOTE: Although the naming attribute for the object is always a mandatory attribute, do not add this
attribute to the buffer. The objectName parameter of the NWDSAddODbject function takes the value
for one naming attribute. If the object has multiple naming attributes, use the objectName parameter
for one attribute and add the others to the buffer.

Once you have the buffer set up with the appropriate attributes and values, you are ready to call
NWDSAddODbject (page 87).

See Also:

¢ “Adding an eDirectory Object” on page 58
¢ ndsaddl.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

40 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

1.7 eDirectory Security and Applications

This module describes how you, as a software developer, can use eDirectory security in your
applications.

First of all, some of the terminology changes when you go behind the scenes to the programmer’s
perspective. Here are some of the most important changes:

¢ Object Rights are called [Entry Rights]
+ Properties are called Attributes

¢ All Properties Rights are called [All Attributes Rights]

Most of Security programming is very simple when you know how to read and write information
about objects in the eDirectory tree. Reading and writing objects and their information is discussed
in detail in other chapters, so the focus here is on what is specific to security.

Let’s look at what a program would do to read the Access Control Lists (ACLs) of a particular

object. Once you become familiar with eDirectory programming in general as described in the other

chapters, there’s not much new to security. The following program is presented in pseudo-code to

simplify our discussion:

NWCallsInit () This function initializes the Unicode tables
and low-level interface functions.

NWDSCreateContextHandle () Get a context allocated for our program to
communicate with eDirectory

NWDSAllocBuf () Allocate a buffer for the ACL results to be
stored in

NWDSAllocBuf () Used to store attribute names in NWDSRead
NWDSRead () infoType=1, allAttrs=FALSE, iterationHandle=-1
NWDSGetAttrCount () How many attributes are in the buffer? Better

just be one!

NWGetAttrName () We already know the name is ACL, but we need
the valCount

while (valcount-) Loop through the buffer, and process each ACL

{ NWDSComputeAttrvValSize () How big is our next attribute value?
OurMem=malloc () Allocate memory to store the next value
NWDSGetAttrval () Put the attribute value (our ACL) in

the buffer we just allocated memory for
/* when we use the NWDSGetAttrVal() we’ll be using a structure
Object ACL T, which holds all of the ACL information we need.

We can process this information to it needs to */

free (OurMem) We need to keep memory clean!

Programming Concepts

4

}
NWDSFreeBuf () Free each of the buffers we allocated earlier

NWDSFreeContext () Free the context we allocated earlier

NWDSFreeUnicodeTables () Now we’ve done all the eDirectory
housecleaning items

You use the standard functions NWDSModifyObject (page 286) and NWDSRead (page 327) for
reading and writing ACLs to objects. You will notice from the comments in this pseudocode that
reference is made to an Object ACL T (page 451) structure. This is the structure that holds the
contents of the ACL. The structure type definition is:

typedef struct
{

pnstr8 protectedAttrName;
pnstr8 subjectName;
nuint32 privileges;

}Object ACL T;

Generally, you refer to specific attributes of an object when granting rights. As discussed earlier
from the administrator’s perspective on security, you can use special notations to refer to all object
rights or all property rights. These notations are summarized below:

+ When you use [Public] as the subject name, you are, in effect, granting all users those rights.

¢ When you use [Inheritance Mask] as the subject name, you are setting up an Inherited Rights
Filter.

¢ When you use [Entry Rights] as the attribute name, you are giving the rights to the object.

+ When you use [All Attributes Rights] as the attribute name, you are giving (or reading) the
rights to the entire set of attributes.

Let’s say that user Joe.Sales.MyCompany was given rights to all attributes of the printer object
Printerl.Accounting. MyCompany. The protectedAttrName would be [All Attributes Rights], which
indicates Joe has rights to all properties, or attributes. The subjectName would be
“Joe.Sales.MyCompany”, to indicate the user who has the rights. And the privileges, which is a 32-
bit value, would have the lower bits set according to the privileges granted to user Joe (see

Section 5.18, “eDirectory Access Control Rights,” on page 477).

1.8 Authentication of Client Applications

Most client workstations log in when they are started. This login process establishes an
authenticated connection to eDirectory and a licensed connection to the network server to which you
are attached. A licensed connection gives your application rights, such as rights to a particular file
system volume, to perform eDirectory operations.

If your application is meant to run on a client workstation, you can either assume that a licensed
connection has been established, or you can log in to establish a licensed connection. In either case,
your development burden has been greatly reduced.

The authentication problem that you will most likely encounter is the need to establish a second
connection to another server. For example, your program might read a File object and discover that
it refers to the file system of a server to which you have not established a licensed connection.

42 NDK: Novell eDirectory Core Services

To gain access to another server, your application can open another connection using
NWDSOpenConnToNDSServer (page 297) and then authenticate the connection using
NWDSAuthenticateConn (page 103).

NWDSAuthenticateConn (page 103) authenticates and licenses the connection so that you can
access the file system.

1.9 Multiple Tree Support

eDirectory Libraries for C provide multiple tree support. Your application can have the user log in to
each tree, and then the libraries can manage the background authentication as the user accesses
resources in each eDirectory tree.

Client applications and NLM applications use different methods.

¢ NLM applications manipulate multiple tree identities through the current user in the thread
group structure. See Section 1.9.1, “NLM Applications and Multiple Tree Identities,” on
page 43 for more information.

¢ Client applications manipulate multiple tree identities through the context handle. See
Section 1.9.2, “Client Applications and Multiple Tree Identities,” on page 44 for more
information.

The libraries supply the following functions for discovering eDirectory trees.

Function Description

NWDSScanConnsForTrees (page 379) Scans existing connections and returns tree
names.

NWDSScanForAvailableTrees (page 381) Scans the bindery of the specified connection

and returns one tree name. To return multiple
tree names, the function must be called
multiple names.

NWDSReturnBlockOfAvailableTrees (page 376) Scans the bindery of the specified connection
and returns the specified number of tree
objects.

1.9.1 NLM Applications and Multiple Tree Identities

An NLM has a current user associated with each thread group. The eDirectory Libraries for C use
the current user for background authentication. If an NLM needs to establish connections to multiple
eDirectory trees or use multiple identities to log in to the same eDirectory tree, the NLM must
manage the current user in the thread group structure. Two functions, NWDSGetCurrentUser and
NWDSSetCurrentUser, allow this manipulation.

An NLM creates a new identity by first calling the NWDSSetCurrentUser function with identity
parameter set to zero (0). This removes the current user from the thread group structure. The NLM
then calls NWDSCreateContextHandle. The eDirectory libraries check the thread group structure
for a current user. Since there isn't one, the eDirectory libraries create a new current user for the
thread group. The last step is a call to NWDSLogin which authenticates and establishes credentials
for this new user.

Programming Concepts

43

The NWDSGetCurrentUser function allows the NLM to get the current user information so that
information can be saved and used again with that identity. The NWDSSetCurrentUser function
allows that identity to be restored to a thread group.

If an NLM wants to switch between two or more users, the NLM must save and manage the user
information for each user created. The eDirectory libraries do not save the user information for
multiple users. They maintain only information about the current user in the thread group structure.
If the NLM does not save and manage the information for multiple users, the information is lost. For
step-by-step instructions for accessing multiple eDirectory trees, see “Establishing Identities to
Multiple eDirectory Trees—NLM Platform” on page 55.

1.9.2 Client Applications and Multiple Tree Identities

Applications for Windows 95, Windows 98, and Windows NT establish identities to multiple
eDirectory trees by manipulating the DCK_TREE NAME key in the context handle.

For step-by-step instructions for accessing multiple eDirectory trees, see “Establishing Identities to
Multiple eDirectory Trees—Client Platforms” on page 56.

1.10 Effective Rights Function

These two functions are specific to security.

Function Description

NWDSGetEffectiveRights (page 203) Returns the effective rights of one object to access
another object or its attributes.

NWDSListAttrsEffectiveRights (page 251) Returns the effective rights of one object to access
another object's attributes.

See Also:

¢ readeff.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

1.11 Partition Functions

These functions operate on partitions.

Function Comment

NWDSJoinPartitions (page 246) Joins a subordinate partition to its parent partition.

NWDSListPartitions (page 264) Lists the immediate subordinates of an object.

NWDSListPartitionsExtInfo (page 267) Returns information about the replicas of partitions
stored on a specified server.

NWDSRemovePartition (page 361) Deletes an existing partition by deleting its master
replica.

NWDSSplitPartition (page 394) Divides a partition into two partitions at a specified
object.

44 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

Function Comment

NWDSSyncPartition (page 396) Signals the synchronization process to schedule an
update of a specified partition a specified number of
seconds into the future.

1.12 Replica Functions

These functions operate on replicas of a partition.

Function Comment

NWDSAddReplica (page 91) Adds a replica of an existing partition to a server.

NWDSChangeReplicaType (page 122) Changes the replica type of a given replica on a given
server.

NWDSRemoveReplica (page 363) Deletes a replica from the replica set of a partition.

NWDSSyncReplicaToServer (page 398) Requests a replica to initiate synchronization with a

specified server.

1.13 Read Requests for Schema Information

The schema read functions work similar to the read functions for database entry (object)
information. They use input and output buffers, information types, iteration handles if the result
buffer may not be able to contain all the requested information, and specialized functions for
retrieving the information from the result (output) buffer. See Section 1.3, “Read Requests for
Object Information,” on page 26 if you are not familiar with these procedures.

Class Definition Functions. The following table lists the functions that you can use to read
information about object class definitions.The list includes the functions that read the information
and the specialized functions that retrieve the information from the result buffer.

Function Purpose

NWDSReadClassDef (page 333) Reads a class definition. This function is configurable
so that you can control the type of information it returns
about a class. All requested information about a class
must be retrieved before moving to the next class.

NWDSListContainableClasses (page 258) Returns the names of the object classes that the
specified object class can contain.

NWDSGetClassDefCount (page 185) Returns the number of class definitions in the result
buffer.

NWDSGetClassDef (page 183) Retrieves the name of an object class and, if requested,

the class flags and ASN.1 identifier.

Programming Concepts

45

Function Purpose

NWDSGetClassltemCount (page 189) Returns the number of items of a particular information
type. Must be called for each information type specified
in the read request. For example, the
DS_CLASS_DEFS information type returns five types
of information: super classes, containment classes,
naming attributes, mandatory attributes, and optional
attributes. This function must be called once for each of
these types, but only after all the information items of
the previous type has been retrieved.

NWDSGetClassltem (page 187) Returns a class information item. Must be called
repeatedly for each item in the count. For example, if
the class has two super classes, it must be called twice
to retrieve the two super class names.

For step-by-step instructions for reading schema information, see the following:

¢ “Reading a Class Definition” on page 70
+ “Listing Containable Classes” on page 69

For sample code, see rdclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/
index.htm).

Attribute Definition Functions. The following table lists the functions that you can use to read
attribute type definitions. The list includes the functions that read the information and the
specialized functions that retrieve the information from the result buffer.

Function Purpose
NWDSReadAttrDef (page 330) Reads existing attribute type definitions.
NWDSGetAttrCount (page 169) Returns the number of attributes whose information is

stored in a result buffer.

NWDSGetAttrDef (page 171) Returns the next attribute definition from a result buffer.

)

For step-by-step instructions on reading attribute definitions, see “Reading an Attribute Definition’
on page 72.

For sample code, see rdattdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/
index.htm).

Attribute Syntax Definition Functions. The following table lists the functions that you can use to
read information about syntaxes and their definitions. The list includes the read functions and the
specialized functions that retrieve the information from the result buffer.

Function Purpose
NWDSReadSyntaxDef (page 346) Returns the syntax definition for the specified syntax ID.
NWDSGetSyntaxID (page 240) Returns the syntax ID for the specified attribute.

46 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

Function Purpose

NWDSReadSyntaxes (page 348) Returns a list of attribute syntax definitions. You can
configure this function to return just names or names
and definitions.

NWDSGetSyntaxCount (page 236) Returns the number of syntaxes whose information is
stored in a result buffer filled by the
NWDSReadSyntaxes function.

NWDSGetSyntaxDef (page 238) Returns the next syntax definition from a result buffer
filled by the NWDSReadSyntaxes function.

For step-by-step instructions on reading syntax definitions, see “Retrieving Syntax Names and
Definitions” on page 73.

1.14 Schema Extension Requests

The schema can be extended by adding new attributes and classes. New syntax definitions cannot be
added. New attributes must be added before the attributes can be added to the class.

¢ Section 1.14.1, “Attribute Definition Functions,” on page 47

¢ Section 1.14.2, “Class Definition Functions,” on page 47

1.14.1 Attribute Definition Functions

The following table lists the functions that you can use to add or delete the attribute type definitions
in the schema.

Function Purpose
NWDSDefineAttr (page 135) Creates a new attribute type definition.
NWDSRemoveAttrDef (page 355) Deletes attribute type definitions. Attributes can be

deleted only if they are not assigned to an object class
and if they are not part of the operational schema.

Adding attributes is usually only the first step in the process of extending the schema. An attribute
cannot be used by a class until it is added to the class when the class is first defined or if the class is
already defined, when the class is modified.

Attributes cannot be deleted if they are used by a class definition.
For step-by-step instructions, see

¢ “Creating an Attribute Definition” on page 68
¢ “Deleting an Attribute Definition” on page 69

1.14.2 Class Definition Functions

The following table lists the functions that you can use to add or modify the object class definitions
in the schema.

Programming Concepts

47

Function Purpose

NWDSDefineClass (page 137) Creates a new class.
NWDSModifyClassDef (page 281) Modifies an existing class.
NWDSRemoveClassDef (page 357) Deletes a class definition.

These functions are used in conjunction with other specialized functions. The input buffer, which
will contain the information for the new class or a modification for an existing class, must be
allocated and then initialized for the operation. (For the operation type, see Section 5.3, “Buffer
Operation Types and Related Functions,” on page 464.) The information must be placed in the
buffer using specialized functions. Each information item is placed in the buffer separately. For
example, to add three optional attributes to a new class definition, you would call
NWDSPutClassltem once for each attribute. After all the information has been placed in the input
buffer, you call the function that modifies or creates the class.

Your input buffer must be big enough to hold all the information to create a class or modify it.
For step-by-step instructions, see

¢ “Creating a Class Definition” on page 67
+ “Modifying a Class Definition” on page 70
¢ “Deleting a Class Definition” on page 69

For code samples, see

¢ crclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
¢ rdclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

48 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

Tasks

This chapter describes the most common tasks associated with accessing the Novell® eDirectory™
tree, its information, and schema.

¢ Section 2.1, “Context Handle Tasks,” on page 49
¢ Section 2.2, “Buffer Tasks,” on page 52

*

Section 2.3, “Authentication and Connection Tasks,” on page 54

*

Section 2.4, “Object Tasks,” on page 57

*

Section 2.5, “Partition and Replica Tasks,” on page 65

*

Section 2.6, “Schema Tasks,” on page 67

2.1 Context Handle Tasks

An NDS context points to a specific location in the eDirectory tree. This section gives instructions
on how to create, free, modify, and read a context.

¢ Section 2.1.1, “Creating a Context Handle,” on page 49

¢ Section 2.1.2, “Freeing a Context Handle,” on page 50

¢ Section 2.1.3, “Modifying the Context of the Context Handle,” on page 50
¢ Section 2.1.4, “Reading the Context of the Context Handle,” on page 51

2.1.1 Creating a Context Handle

To create a context handle, the Unicode tables must be initialized.
1 Call NWDSCreateContextHandle (page 133).

The following code illustrates these steps.

NWDSCCODE ccode;
NWDSContextHandle context;

ccode = NWDSCreateContextHandle (&context) ;
if (ccode)

/* handle creation error */

See Also:

+ “Reading the Context of the Context Handle” on page 51
+ “Modifying the Context of the Context Handle” on page 50
+ “Freeing a Context Handle” on page 50

+ ndscontx.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

Tasks

49

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

2.1.2 Freeing a Context Handle

Freeing a context frees memory.
1 Call NWDSFreeContext (page 160).

The following code illustrates this procedure.
NWDSCCODE err;

// Now free the context before exiting the program.
err = NWDSFreeContext (context);
if(!err)
printf ("\n\nContext was freed\n");
else
printf ("\n\nError <%d> occurred while freeing context\n", err);

See Also:

+ ndscontx.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

¢ “Creating a Context Handle” on page 49

2.1.3 Modifying the Context of the Context Handle

The following steps explain how to modify the context of the context handle. (For a list of other
keys and flags that can be modified, see Section 5.6, “Context Keys and Flags,” on page 467.)

Modifying the context of the context handle is only important if the context handle is set to use both
dot name forms and canonicalized names. (These values are assigned as defaults when a context
handle is created.)

1 Call NWDSSetContext (page 387) with the DCK_ NAME CONTEXT flag and the name of the
new context.

The context name should be in the following format:

¢ In the local code page if the SCV_XPLATE STRINGS flag is on (default) or Unicode if
off.

¢ The complete name of the context, without the tree name.

The following code illustrates these procedures.

NWDSCCODE err;
char newContextName [MAX DN CHARS+1]; /* ((MAX DN CHARS+1) *2) for
unicode */
/* change the context name */
printf ("\n\nEnter a new name context: \n");
gets (newContextName) ;
err=NWDSSetContext (context, DCK NAME CONTEXT, newContextName) ;
if (err)
{
printf ("\n\nNWDSSetContext returned error <%d>",err);

}

else

{
printf ("\n\nNWDSSetContext returned <%d>",err);

50 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

printf ("\nName context is set.");

See Also:

+ “Freeing a Context Handle” on page 50
+ “Reading the Context of the Context Handle” on page 51
¢ Section 5.6, “Context Keys and Flags,” on page 467

+ ndscontx.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

2.1.4 Reading the Context of the Context Handle

The following steps explain how to read the context of the context handle. (For a list of other
information that can be read about the context handle, see Section 5.6, “Context Keys and Flags,” on
page 467.)

1 Declare a variable that matches the data type of the context name key (a NULL terminated
string) and that is large enough to hold the name of the context.

Local code page names need a length of MAX DN _CHARS+1 and Unicode names need
((MAX DN _CHARS+1)*2).

2 Call NWDSGetContext (page 191) with the key parameter set to DCK_NAME CONTEXT.

The following code illustrates these procedures.

void ShowNameContext (NWDSContextHandle context)

{
NWDSCCODE err;
char name [MAX DN CHARS+1]; /* ((MAX DN CHARS+1)*2)for unicode */
err = NWDSGetContext (context, DCK NAME CONTEXT, name);
if (err)
{
printf ("\n\nNWDSGetContext returned error <%d>",err);

}

else

{
printf ("\nCurrent Name Context: %s",name);

}

See Also:

+ “Modifying the Context of the Context Handle” on page 50
+ “Freeing a Context Handle” on page 50
¢ Section 5.6, “Context Keys and Flags,” on page 467

¢ ndscontx.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

Tasks

51

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

2.2 Buffer Tasks

Many eDirectory functions require input buffers or output buffers. Many require both. This section
provides procedures for managing these buffers.

¢ Section 2.2.1, “Preparing eDirectory Input Buffers,” on page 52

¢ Section 2.2.2, “Preparing eDirectory Output Buffers,” on page 53

¢ Section 2.2.3, “Retrieving Results from eDirectory Output Buffers,” on page 53
¢ Section 2.2.4, “Freeing eDirectory Buffers,” on page 53

2.2.1 Preparing eDirectory Input Buffers

This task prepares a memory buffer for writing data to eDirectory.

1 Allocate memory for the input buffer by calling NWDSAllocBuf (page 95). The following
code allocates a buffer of size DEFAULT MESSAGE LEN constant.

pBuf T inputBuffer;

ccode = NWDSAllocBuf (DEFAULT_MESSASE_LEN, &inputBuffer);
if (ccode)
printf ("Error while allocating buffer: %d\n", ccode);

2 Initialize the input buffer by calling NWDSInitBuf (page 242). Choose one of the Initialization
Operations for eDirectory Input Buffers (page 25) according to the intended operation. The
following code initializes an input buffer for a read operation.
ccode = NWDSInitBuf (context, DSV _READ, &inputBuffer);
if (ccode)

printf ("Error while initializing buffer: $d\n", ccode);

3 Place the input data into the buffer using the eDirectory Input Buffer Functions (page 25) that
correspond to the data type you are handling.

ccode = NWDSAllocBuf (DEFAULT MESSAGE LEN, &inputBuffer);

if (!ccode)

{ ccode = NWDSInitBuf (context, DSV _READ, &inputBuffer);
ccode = NWDSPutAttrName (context, inputBuffer, "surname");
ccode = NWDSPutAttrName (context, inputBuffer, "CN");
ccode = NWDSPutAttrName (context, inputBuffer, "Login Script");
ccode = NWDSPutAttrName (context, inputBuffer, "Language"):;
ccode = NWDSPutAttrName (context, inputBuffer, "Email Address");

NOTE: Don t add data to a buffer directly. eDirectory contains a complete set of input buffer
functions that operate on buffers allowing you to enter data. To add data to the Buffer, you must use
the function that corresponds to the data type you are handling.

See Also:

¢ “Preparing eDirectory Output Buffers” on page 53
¢ “Freeing eDirectory Buffers” on page 53

52 NDK: Novell eDirectory Core Services

2.2.2 Preparing eDirectory Output Buffers

This task prepares a buffer for retrieving data from an eDirectory directory.

1 Allocate memory for the input buffer by calling NWDSAllocBuf (page 95). The following
code allocates a buffer of size DEFAULT MESSAGE_LEN constant.

pBuf T outputBuffer;

ccode = NWDSAllocBuf (DEFAULT MESSASE LEN, &outputBuffer):;
if (ccode)
printf ("Error while allocating buffer: %d\n", ccode);

NOTE: Unlike an input buffer, you don’t need to initialize an output buffer.

Don t retrieve or delete data from a buffer directly. eDirectory contains a complete set of eDirectory
Output Buffer Functions (page 26) that operate on buffers allowing you to retrieve data. To read data
from the Buffer, you must use the function that corresponds to the data type you are handling.

See Also:

¢ “Retrieving Results from eDirectory Output Buffers” on page 53
¢ “Preparing eDirectory Input Buffers” on page 52

2.2.3 Retrieving Results from eDirectory Output Buffers

This task reads data from an output buffer.

1 Determine the number of objects in the buffer by calling NWDSGetObjectCount (page 210).

2 Determine the amount of memory required for each object attribute by calling
NWDSComputeAttrValSize (page 130).

3 Allocate memory to receive the attribute data.

4 Retrieve the attribute data from the buffer by calling the eDirectory Output Buffer Functions
(page 26) that correspond to the data type you are handling.

5 Loop through steps 2, 3, and 4 until all attributes of every object in the buffer has been
retrieved.

NOTE: Data must be read from an output buffer sequentially. Do not skip an item, even if you
already know its value.

See Also:

¢ “Freeing eDirectory Buffers” on page 53

2.2.4 Freeing eDirectory Buffers

This task releases a buffer allocated by NWDSAllocBuf (page 95). After you have executed an
operation using a buffer and retrieved the information from the output buffer (if applicable), always
free the buffer memory.

1 To free buffer memory, call NWDSFreeBuf (page 158), as shown in the following example.

Tasks

53

NWDSFreeBuf (outBuf); // Always returns successful

See Also:

¢ “Listing Objects in an eDirectory Container” on page 60

2.3 Authentication and Connection Tasks

To access all but the public available eDirectory information, applications must establish a
connection and authenticate to eDirectory. This section provides instructions on accessing
eDirectory information that is available from the connection, authenticating to eDirectory, retrieving
the server address of the connection.
¢ Section 2.3.1, “Accessing eDirectory Ping Information,” on page 54
¢ Section 2.3.2, “Authenticating to eDirectory,” on page 54
+ Section 2.3.3, “Establishing Identities to Multiple eDirectory Trees—NLM Platform,” on
page 55
¢ Section 2.3.4, “Establishing Identities to Multiple eDirectory Trees—Client Platforms,” on
page 56

¢ Section 2.3.5, “Retrieving Addresses of a Connected Server,” on page 57

2.3.1 Accessing eDirectory Ping Information

1 Allocate a request buffer of type Buf T (page 436) by calling NWDSAllocBuf (page 95).

2 Call NWDSReadNDSInfo (page 336). Pass the requestedFields parameter an OR of DSPING
flags for which information is needed (see Section 5.19, “eDirectory Ping Flags,” on page 479).

3 Call NWDSGetNDSInfo (page 208) to retrieve information returned about any single field.
Pass in the result buffer returned from NWDSReadNDSInfo for the resultBuffer parameter, a
single flag for the requestedField parameter, and a pointer to memory of the appropriate size for
the data parameter.

NOTE: For NWDSGetNDSInfo, fields can be called in any order, and the information can be
retrieved so long as the buffer has not been reused or freed. A particular field can even be retrieved
multiple times.

2.3.2 Authenticating to eDirectory

Most client workstations log in to the network when they are booted making it unnecessary for many
client applications to perform this task. See Section 1.8, “Authentication of Client Applications,” on
page 42.

If you want your application to have full responsibility for accessing the network, or if you are
writing an NLM that must access eDirectory or another NLM on a different server, you can control
the authentication process by following these steps.

1 Initialize an eDirectory context by calling NWDSCreateContextHandle (page 133).
2 Ifneeded, call NWDSSetContext (page 387) to change context values.

54 NDK: Novell eDirectory Core Services

For information about changing your context, see Section 1.1, “Context Handles,” on page 15
and “Modifying the Context of the Context Handle” on page 50.

3 Log in to eDirectory by calling NWDSLogin (page 270).

4 Open a new connection by calling either NWDSOpenConnToNDSServer (page 297),
NWCCOpenConnByName (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/
doc/clib/cmgnxenu/data/sdk645.html), or NWCCOpenConnByRef (http://
developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/
sdk661.html).

5 Authenticate and license the new connection by calling NWDSAuthenticateConn (page 103).

NOTE: The process of authenticating to eDirectory is the same for client applications and NLMs.
The only difference is that NLMs do not inherit the credentials of the computer they are running on.

Although an NLM has administrator rights to the local file system directory, it is not authenticated to
eDirectory as “admin”; it is authenticated as “public”. If you want to do anything with eDirectory
other than read public information, you must log in. The authentication credentials are stored on the
thread group level and are accessible only by the OS.

2.3.3 Establishing Identities to Multiple eDirectory Trees—NLM
Platform

NLMs establish identities to multiple eDirectory trees by manipulating the DCK_TREE NAME
key and by managing the current user in the thread group structure. NLMs must manage the current
user associated with each thread group.

To establish identities to two eDirectory trees, follow these steps. They are separated into three
procedures: logging in User 1 to Tree 1, logging in User 2 to Tree 2, and switching between users.

User 1 to Tree 1
To log in User 1 to Tree 1, follow these steps.
1 Call NWDSSetCurrentUser (page 389) with the userHandle parameter set to zero (0) to clear
the user information in the thread group structure.
2 Call NWDSCreateContextHandle (page 133).

3 Call NWDSSetContext (page 387) with DCK_TREE NAME as the value for the key
parameter and point the value parameter to the name of Tree 1.

These instructions call this the context handle for User 1.

4 Call NWDSLogin (page 270) with the context handle for User 1, the eDirectory name for User
1, and User 1's password.

5 Call NWDSGetCurrentUser (page 196) and save the information to use for User 1 in Tree 1.
User 2 to Tree 2
To log in User 2 to Tree 2, follow these steps.

1 Call NWDSSetCurrentUser (page 389) with the userHandle parameter set to zero (0) to clear
the user information in the thread group structure.

2 Call NWDSCreateContextHandle (page 133).

Tasks

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk645.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk661.html

3 Call NWDSSetContext (page 387) with DCK_TREE NAME as the value for the key
parameter and point the value parameter to the name of Tree 2.

These instructions call this the context handle for User 2.

4 Call NWDSLogin (page 270) with the context handle for User 2, the eDirectory name for User
2, and User 2's password.

5 Call NWDSGetCurrentUser (page 196) and save the information to use for User 2 in Tree 2.

Switching Between Trees

With two users authenticated to two eDirectory trees, you can switch between them by following
these steps.

1 Call NWDSSetCurrentUser (page 389) with the userHandle parameter set to the value for User
L.

2 Use the context handle that you set up for User 1 in Tree 1 and call the eDirectory functions to
perform work in Tree 1.

3 To switch to User 2 in Tree 2, call NWDSSetCurrentUser (page 389) with the userHandle
parameter set to the value for User 2.

4 Use the context handle that you set up for User 2 in Tree 2 and call the eDirectory functions to
perform work in Tree 2.

2.3.4 Establishing Identities to Multiple eDirectory Trees—
Client Platforms

Applications for Windows 95, Windows 98, and Windows NT establish identities to multiple
eDirectory trees by manipulating the DCK_TREE NAME key. To establish an identity to two

eDirectory tree, follow these steps. They are divided into three tasks: logging User 1 in to Tree 1,
logging User 2 in to Tree 2, and switching between users.

User 1 to Tree 1
To log User 1 in to Tree 1, follow these steps.

1 Call NWDSCreateContextHandle (page 133) to create a context handle.

2 Call NWDSSetContext (page 387) with DCK_TREE NAME as the value for the key
parameter and point the value parameter to Tree 1.

These instructions call this the context handle for User 1.

3 Call NWDSLogin (page 270) with the context handle for User 1, the eDirectory name for User
1, and User 1's password.
User 2 to Tree 2
To log in User 2 to Tree 2, follow these steps.

1 Call NWDSCreateContextHandle (page 133) to create a context handle.

2 Call NWDSSetContext (page 387) with DCK_TREE NAME as the value for the key
parameter and point the value parameter to Tree 2.

These instructions call this the context handle for User 2.

56 NDK: Novell eDirectory Core Services

3 Call NWDSLogin (page 270) with the context handle for User 2, the eDirectory name for User
2, and User 2's password.

Switching between Trees

With two users authenticated to two eDirectory trees, you can switch between them by following
these steps.
1 To perform work on Tree 1, call eDirectory functions with the context handle for User 1.

2 To perform work on Tree 2, call eDirectory functions with the context handle for User 2.

2.3.5 Retrieving Addresses of a Connected Server

To determine the network addresses for a server associated with a connection, follow these steps:
1 Allocate a result buffer by calling NWDSAllocBuf (page 95). This buffer does not need to be
initialized since it is a result buffer.
2 Call NWDSGetServerAddresses2 (page 230).
3 Call NWDSComputeAttrValSize (page 130) to find the size of the address data in the buffer.

4 Allocate a contiguous block of memory the size of the attribute value, and set a void pointer to
point to that block.

5 Call NWDSGetAttrVal (page 175), passing in the pointer to the allocated memory.

6 When NWDSGetAttrVal (page 175) returns, typecast the pointer to be a pointer to
Net_Address_T, and retrieve the information.

7 Before retrieving the next address, free the allocated memory. (Addresses can be different
sizes.)

8 Loop to Step 3 until all addresses have been removed from the result buffer.
9 Free the result buffer by calling NWDSFreeBuf (page 158).

When all addresses have been retrieved, free the result buffer pointer to netAddresses.

See Also:

¢ “Preparing eDirectory Input Buffers” on page 52

2.4 Object Tasks

After authenticating to an eDirectory tree, the most common tasks are those associated with adding
information to the tree (objects and attribute values), modifying the information, and reading
(searching and comparing) the existing information. This section provides procedures for these
kinds of tasks:

*

Section 2.4.1, “Adding an eDirectory Object,” on page 58

*

Section 2.4.2, “Comparing Attribute Values,” on page 58

*

Section 2.4.3, “Deleting an eDirectory Object,” on page 59

*

Section 2.4.4, “Determining the Effective Rights of an Object,” on page 59

*

Section 2.4.5, “Finding the Host Server of an Object,” on page 60

Tasks

57

*

Section 2.4.6, “Listing Objects in an eDirectory Container,” on page 60

*

Section 2.4.7, “Modifying an eDirectory Object,” on page 61

*

Section 2.4.8, “Adding an Auxiliary Class to an eDirectory Object,” on page 62

*

Section 2.4.9, “Reading Attributes of eDirectory Objects,” on page 62

*

Section 2.4.10, “Searching eDirectory,” on page 63

2.41 Adding an eDirectory Object

To add an object to eDirectory, follow these steps:

1 Allocate memory for the request buffer by calling NWDSAllocBuf (page 95).
2 Set the iterationHandle to NO_MORE_ITERATIONS.

3 Initialize the request buffer for a DSV_ADD_ENTRY (7) operation by calling NWDSInitBuf
(page 242).

4 For each attribute to be supplied for the object, first store the attribute’s name in the result
buffer by calling NWDSPutAttrName (page 308). Then store the associated value(s) in the
result buffer by calling NWDSPutAttrVal (page 312) once for each value.

You must supply the mandatory values for the object class as dictated by the schema.
5 Create the new object by calling NWDSAddObject (page 87).
6 Free the request buffer by calling NWDSFreeBuf (page 158).

NOTE: The name of the object is specified by objectName. The naming attribute is mandatory, but
it is specified in the call. It is does not have to be explicitly placed in the objectInfo buffer.

See Also:

¢ ndsaddl.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
¢ Section 1.6, “Add Object Requests,” on page 38

2.4.2 Comparing Attribute Values

Follow these steps to compare an object’s attribute value with another value:

1 Allocate a request buffer by calling NWDSAllocBuf (page 95).

2 Initialize the request buffer for a DSV. COMPARE operation by calling NWDSInitBuf
(page 242).

3 Place the name of the attribute whose value you want to compare into the request buffer by
calling NWDSPutAttrName (page 308).

Place the value you want to compare into the buffer by calling NWDSPutAttrVal (page 312).
Compare the values by calling NWDSCompare (page 128).

Check matched to see if the values matched.

Free the request buffer by calling NWDSFreeBuf (page 158).

N o g b

58 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

See Also:

*

“Searching eDirectory” on page 63

2.4.3 Deleting an eDirectory Object

There is no need to prepare a buffer when performing this task.

1

To delete an Object, call NWDSRemoveObject (page 359)

This function requires only the context handle and the name of the object to be removed, as
shown in the following example:

ccode = NWDSRemoveObject (contextHandle, objectName) ;

NOTE: You cannot remove an object that contains subordinates. All objects in a container must be
removed before the container object can be removed.

See Also:

*

*

*

“Determining the Effective Rights of an Object” on page 59
readeff.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

deluser.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

2.4.4 Determining the Effective Rights of an Object

Determine an object’s effective privileges on another object by following these steps:

1

Allocate the result buffer by calling NWDSAllocBuf (page 95). This buffer does not need to be
initialized since it is a result buffer.

If you want to retrieve information for selected attributes, complete Steps 3 through 5. To
retrieve information for all of the object’s attributes, skip to Step 6.

Allocate the request buffer by calling NWDSAllocBuf (page 95).

4 Initialize the request buffer for a DSV_READ operation by calling NWDSInitBuf (page 242).

Place the attribute names in the request buffer by calling NWDSPutAttrName (page 308) once
for each attribute name.

6 Set iterationHandle to NO_MORE_ITERATIONS.

Call NWDSListAttrsEffectiveRights (page 251).

8 Determine the number of attributes in the result buffer by calling NWDSGetAttrCount

10

1"
12

(page 169).

For each attribute in the result buffer, retrieve the information by calling NWDSGetAttrVal
(page 175).

If the iteration handle is not equal to NO_MORE_ITERATIONS, loop to Step 7. Otherwise, go
to Step 11.

Free the request buffer by calling NWDSFreeBuf (page 158).
Free the result buffer by calling NWDSFreeBuf (page 158).

Tasks

59

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

eDirectory fills results buffers with discrete units of information. If the whole unit cannot fit into the
buffer, the entire unit will be withheld until the next iteration. For NWDSListAttrsEffectiveRights
(page 251), a unit of information consists of an attribute name and privilege.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see “Controlling Iterations” on page 27.

See Also:

+ “Finding the Host Server of an Object” on page 60

2.4.5 Finding the Host Server of an Object

The steps for determining the addresses on a server where an object is located are as follows:
1 Allocate a result buffer by calling NWDSAllocBuf (page 95). This buffer does not need to be
initialized since it is a result buffer.
2 Call NWDSGetObjectHostServerAddress (page 212).

3 Call NWDSGetAttrCount (page 169) to determine the number of attributes stored in the result
buffer.

4 Call NWDSGetAttrName (page 173) to retrieve the attribute name (network address) and the
count of attribute values.

5 For each attribute value, call NWDSComputeAttrValSize (page 130) to find the size of the
current address in the result buffer.

6 Allocate a block of memory the size of the attribute value.

7 Retrieve the current address from the result buffer by calling NWDSGetAttrVal (page 175) and
passing in the pointer allocated in Step 5.

8 When NWDSGetAttrVal (page 175) returns, typecast the pointer to be a pointer to
Net_Address_T, to access the information.

9 Free the allocated memory before retrieving the next address. (Network addresses can be
different sizes.)

10 Loop to Step 4 until all addresses have been removed from the result buffer.
See Also:

+ “Reading Attributes of eDirectory Objects” on page 62

2.4.6 Listing Objects in an eDirectory Container

This task finds all of the immediate subordinates of an object.

1 Allocate memory for the output buffer by calling NWDSAIllocBuf (page 95).
2 Set the iteration handle to NO_MORE_ITERATIONS.
3 Call NWDSList (page 248).

4 Determine the number of subordinate objects in the output buffer by calling
NWDSGetObjectCount (page 210).

60 NDK: Novell eDirectory Core Services

5 Call NWDSGetObjectName (page 214) for each subordinate object in the output buffer.

6 Ifthe iteration handle is not equal to NO_MORE _ITERATIONS, loop to Step 3. Otherwise, go
to Step 7.

7 Free the output buffer by calling NWDSFreeBuf (page 158).

Aborting Iterative Operations

If you need information on aborting an iterative operation, see “Controlling Iterations” on page 27.

See Also:

¢ ndsbrows.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

¢ “eDirectory List Operations” on page 27

2.4.7 Modifying an eDirectory Object

Modifying objects that already exist in eDirectory is very similar to adding a new object.

1 Allocate a data buffer by calling NWDSAllocBuf (page 95).

2 Initialize the buffer for a DSV_MODIFY_ ENTRY (9) operation by calling NWDSInitBuf
(page 242).

3 For each attribute value to be modified, place the desired changes into the buffer using
NWDSPutChange (page 314) and NWDSPutAttrVal (page 312).

NWDSPutChange is used to indicate which attribute is to be modified, and NWDSPutAttrVal
places the new attribute value into the buffer.

Also, a value can be modified by placing a combination of DS REMOVE_VALUE and
DS _ADD_VALUE change records in the same request buffer. This allows the operations to be
completed by calling NWDSModifyObject (page 286) once.

On multivalued attributes

+ [fyou want to remove a value and add a new value, you must place two changes in the
request buffer: one to remove the old value using the DS REMOVE_VALUE flag and one
to add the new value with the DS ADD VALUE flag.

+ [fyou want to ensure the attribute has a value without triggering synchronization, use
NWDSCompare (comparison operations are faster than read or write operations).

+ [fyou want to ensure the attribute has a value, its timesstamp is updated, and
synchronization is triggered, use NWDSModifyObject with the
DS OVERWRITE VALUE flag as the changeType.

The attrName parameter simply refers to a text string containing the attribute name (for
example “Surname”). The buf parameter points to a buffer that has been allocated by calling
NWDSAllocBuf (page 95) and initialized by calling NWDSInitBuf (page 242). Make sure you
use the DSV_MODIFY_ENTRY operation when you initialize the buffer. The changeType
parameter refers to an integer value that defines what type of operation will be made on the
named attribute. See Section 5.5, “Change Types for Modifying Objects,” on page 466.

4 Make the modification by calling NWDSModifyObject (page 286).

Tasks

61

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

Remember, if an attempt is made to modify the Object Class attribute on NDS 7.xx and below, an
error is returned. NDS 8 and above allows modifications to the Object Class attribute (see “Adding
an Auxiliary Class to an eDirectory Object” on page 62).

See Also:

¢ ndsmodob.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

2.4.8 Adding an Auxiliary Class to an eDirectory Object

Auxiliary class are only supported on servers running NDS 8 or higher. If you connect to a server
running an earlier version of eDirectory that has a replica with the object, you cannot added the
auxiliary class to the object because the Object Class attribute cannot be modified. To add an
auxiliary class, you must use a connection to a server that is running NDS 8 and that also has a
replica with the object.

The following steps assume that you have connected to an NDS 8 server and that the auxiliary class
is defined in the eDirectory schema. Auxiliary classes are added to the schema just like other
schema definitions. (For more information, see “Creating a Class Definition” on page 67.)

To add an auxiliary class to a User object, complete the following steps.

1 Allocate a data buffer by calling NWDSAllocBuf (page 95).

2 Initialize the buffer fora DSV_MODIFY_ ENTRY (9) operation by calling NWDSInitBuf
(page 242).

3 Use the NWDSPutChange (page 314) function to put the Object Class attribute in the data
buffer and NWDSPutAttrVal (page 312) function to put the name of the auxiliary class in the
data buffer.

Auxiliary classes can have mandatory attributes. If the class you added in Step 3 has mandatory
attributes, you must put the attribute name and its value into the same data buffer that adds the
auxiliary class to the Object Class attribute. Use the functions listed in Step 3 to add any
mandatory attributes.

Values for optional attributes can be added now or later.
4 Add the auxiliary class by calling NWDSModifyObject (page 286).

You can add and delete only auxiliary class values from the Object Class attribute. The values that
define the object's base class and its super classes are protected so that they cannot be deleted.

2.4.9 Reading Attributes of eDirectory Objects

Read the attributes of an object by following these steps:

Allocate memory for the output buffer by calling NWDSAllocBuf (page 95).

If you are requesting information for all attributes, skip to Step 6.

Call NWDSAIllocBuf (page 95) to allocate memory for the input buffer.

Call NWDSInitBuf (page 242) to initialize the input buffer for a DSV_READ operation.

A H» WON =

Call NWDSPutAttrName (page 308) once for each attribute name being placed in the input
buffer.

6 Set iteration handle to NO_ MORE_ITERATIONS.

62 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

7 SetinfoType to DS ATTRIBUTE VALUES.
8 Call NWDSRead (page 327).
9 Call NWDSGetAttrCount (page 169) to determine the number of attributes in the output buffer.

10 Call NWDSGetAttrName (page 173) to retrieve the name of the current attribute and the
number of its values from the output buffer.

11 Call NWDSComputeAttrValSize (page 130) to determine the size of the attribute value; then
allocate a block of memory that size.

12 Call NWDSGetAttrVal (page 175) to read the attribute value. For multivalued attributes, call
this function for each of the values.

13 Free the memory that was allocated in Step 11.

14 If all of the attribute information has not been read from the output buffer, loop to Step 10.
15 If the iteration handle is not equal to NO_ MORE ITERATIONS, loop to Step 8.

16 If an input buffer was allocated, free the input buffer by calling NWDSFreeBuf (page 158).
17 Free the output buffer by calling NWDSFreeBuf (page 158).

The results of NWDSRead are not ordered and might not appear in alphabetical order.

If infoType is set to DS ATTRIBUTE VALUES, specifying the Read operation should return both
attribute names and values. You must retrieve the information in the correct order; attribute name
first, then all of the values associated with the attribute. Then you must retrieve the next attribute
name and its values and so on. Otherwise, NWDSGetAttrName (page 173) will return erroneous
information.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see “Controlling Iterations” on page 27.

See Also:

¢ ndsreada.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
¢ Section 1.3, “Read Requests for Object Information,” on page 26
+ “eDirectory Read Operations” on page 28

2410 Searching eDirectory

Searching eDirectory is presented here as a sequential list of subordinate tasks to accomplish.
Follow these steps to search a region of eDirectory:

1 Call NWDSAllocBuf (page 95) to allocate the result buffer. This buffer does not need to be
initialized because it is a result buffer.
To search selected attributes, go to Step 3. Otherwise, go to Step 6.
Call NWDSAllocBuf (page 95) to allocate the request buffer.
Call NWDSInitBuf (page 242) to initialize the request buffer for a DSV_SEARCH operation.

Call NWDSPutAttrName (page 308) once for each attribute name to place the names of the
desired attributes into the request buffer.

a b ODN

6 Call NWDSAIllocFilter (page 97) to allocate a filter expression tree.

Tasks

63

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

10
1"

12

13

14

15

16

17
18
19
20
21
22
23

Call NWDSAddFilterToken (page 84) once for each search token to place the search-filter
conditions in the expression tree.

To select all objects, use the filter
FTOK BASECLS *

Call NWDSAllocBuf (page 95) to allocate a filter buffer.

Call NWDSInitBuf (page 242) to initialize the request buffer for a DSV_SEARCH_FILTER
operation.

Call NWDSPutFilter (page 323) to store the search-filter expression tree in the filter buffer.

Call NWDSSearch (page 383) to start the search. Make sure iterationHandle is set to
NO_MORE _ITERATIONS before calling the function.

Call NWDSGetObjectCount (page 210) to determine the number of objects whose information
is stored in the result buffer.

Call NWDSGetObjectName (page 214) to get the name of the current object in the buffer and
the count of attributes associated with the object.

Call NWDSGetAttrName (page 173) to retrieve the name of the attribute and the count of
values associated with the attribute.

Call NWDSComputeAttrValSize (page 130) to determine the size of the attribute value; then
allocate a block of memory that size.

For each value associated with the attribute, call NWDSGetAttrVal (page 175) to retrieve the
value.

Free the memory that was allocated in Step15.

Loop to Step 14 until all attribute information for the object has been read.

Loop to Step 13 until the information for all objects in the buffer has been retrieved.
If the iteration handle is not equal to NO_MORE_ITERATIONS, loop to Step 11.
Call NWDSFreeBuf (page 158) to free the filter buffer.

Call NWDSFreeBuf (page 158) to free the request buffer.

Call NWDSFreeBuf (page 158) to free the result buffer.

You must pull all information from the result buffer even if you do not plan to use it.

Currently, because of aliasing, searching a subtree can result (1) in duplicate entries or (2) in an
infinite loop.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see “Controlling Iterations” on page 27.

See Also:

*

*

ndssearc.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

Section 1.4, “Search Requests,” on page 30

64 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

2.5 Partition and Replica Tasks

This section provides procedures for reading information about partitions and replicas and for
managing them (adding, moving, joining, splitting, and deleting).

¢ Section 2.5.1, “Adding a Replica,” on page 65

¢ Section 2.5.2, “Changing the Type of a Replica,” on page 65

¢ Section 2.5.3, “Joining Partitions,” on page 65

¢ Section 2.5.4, “Listing Partitions and Retrieving Partition Information,” on page 66
¢ Section 2.5.5, “Removing Partitions,” on page 66

¢ Section 2.5.6, “Removing Replicas,” on page 66

¢ Section 2.5.7, “Splitting Partitions,” on page 67

2.5.1 Adding a Replica
To add a replica of an existing partition to a server, complete the following step.
1 Call NWDSAddReplica (page 91) with the name of the partition's root object.

This function adds replicas only of type secondary or read-only. You identify the partition to be
replicated by supplying the name of the partition’s root object.

See Also:

¢ “Changing the Type of a Replica” on page 65

2.5.2 Changing the Type of a Replica
To change a replica’s type, complete the following step.
1 Call NWDSChangeReplicaType (page 122).

You identify the replica by passing in the name of the server containing the replica and the
name of the partition’s root object. If you change a replica’s type to master, the current master
replica will be changed to a secondary replica.

See Also:

+ “Removing Replicas” on page 66

2.5.3 Joining Partitions
To join a subordinate partition to its parent, complete the following step.
1 Call NWDSJoinPartitions (page 246).

You can perform this operation only on master replicas residing on the same server. You can
join two partitions if no secondary or read-only replicas of either partition exist. The two
partitions joined must be a subordinate partition and its parent.

Tasks

65

See Also:

+ “Splitting Partitions” on page 67
+ “Removing Partitions” on page 66

¢ “Changing the Type of a Replica” on page 65

2.5.4 Listing Partitions and Retrieving Partition Information

To obtain information about the partitions stored on a specified server, complete the following steps.

1 Allocate a result buffer to receive the results by calling NWDSAllocBuf (page 95). (The buffer
does not need to be initialized since it is a result buffer.)

2 Set the iteration handle to NO MORE_ITERATIONS.
3 Obtain the partition information by calling NWDSListPartitions (page 264).

4 Determine the number of partitions whose information is stored in the result buffer by calling
NWDSGetServerName (page 234).

5 For each partition whose information is stored in the buffer, retrieve the partition name and type
by calling NWDSGetPartitionInfo (page 224).

6 Ifthe iteration handle is set to NO_MORE_ITERATIONS, go to Step 7; otherwise, loop to Step
3.

7 Free the buffer when it is no longer needed by calling NWDSFreeBuf (page 158).

If you decide to stop retrieving partition information before iterationHandle is set to
NO_MORE_ITERATIONS, call NWDSCloselteration (page 126) to free memory and state
information associated with the partition listing operation.

See Also:

¢ “Joining Partitions” on page 65

2.5.5 Removing Partitions

To delete a partition, complete the following step.
1 Call NWDSRemovePartition (page 361).

You can remove a partition only if there are no secondary or read-only replicas of the partition.
The partition must also be empty, containing no other objects except the root container object.

See Also:

¢ “Adding a Replica” on page 65

2.5.6 Removing Replicas

To delete a replica of a partition, complete the following step.

1 Call NWDSRemoveReplica (page 363).

66 NDK: Novell eDirectory Core Services

You identify the replica by supplying the name of the server and the name of the partition’s root
object. This function can remove only secondary and read-only replicas.

NOTE: NWDSJoinPartitions removes the master replica of the subordinate partition.

See Also:

+ “Adding a Replica” on page 65
¢ “Changing the Type of a Replica” on page 65

2.5.7 Splitting Partitions

To divide a partition at a specified object, complete the following step.
1 Call NWDSSplitPartition (page 394).

The specified object becomes the root object of the subordinate partition. Split operations are
always performed on the master replica.

See Also:

+ “Removing Partitions” on page 66

2.6 Schema Tasks

This section provides procedures for modifying the schema by deleting or creating classes and
attributes. It also provides procedures for reading the schema definitions: classes, attributes, and
syntaxes. See one of the following:

¢ Section 2.6.1, “Creating a Class Definition,” on page 67

¢ Section 2.6.2, “Creating an Attribute Definition,” on page 68

¢ Section 2.6.3, “Deleting a Class Definition,” on page 69

¢ Section 2.6.4, “Deleting an Attribute Definition,” on page 69

¢ Section 2.6.5, “Listing Containable Classes,” on page 69

¢ Section 2.6.6, “Modifying a Class Definition,” on page 70

¢ Section 2.6.7, “Reading a Class Definition,” on page 70

¢ Section 2.6.8, “Reading an Attribute Definition,” on page 72

¢ Section 2.6.9, “Retrieving Syntax Names and Definitions,” on page 73

2.6.1 Creating a Class Definition

Defining a new object class for the eDirectory Schema is done with the following steps:

1 Allocate a structure of type Class Info T (page 439) and fill it in.
2 Allocate a request buffer by calling NWDSAllocBuf (page 95).

3 Initialize the request buffer for a DSV_DEFINE_CLASS operation by calling NWDSInitBuf
(page 242).

Tasks

67

10

1"

12

13

14

15

Prepare the request buffer for storing object-class names in the Super Class Names list by
calling NWDSBeginClassltem (page 110).

Place the desired object-class names in the Super Class List by calling NWDSPutClassltem
(page 319) once for each object-class name to be placed in the list.

Prepare the request buffer for storing object-class names in the Containment Class Names list
by calling NWDSBeginClassltem (page 110).

Place the desired object-class names in the Containment Class Names list by calling
NWDSPutClassltem (page 319) once for each object-class name to be placed in the list.

Prepare the request buffer for storing naming-attribute names in the Naming Attributes List by
calling NWDSBeginClassltem (page 110).

Place the desired naming-attribute names in the Naming Attributes List by calling
NWDSPutClassltem (page 319) once for each naming-attribute name to be placed in the list.

Prepare the request buffer for storing attribute names in the Mandatory Attribute Names list by
calling NWDSBeginClassltem (page 110).

Place the desired attribute names in the Mandatory Attribute Names list by calling
NWDSPutClassltem (page 319) once for each attribute name to be placed in the list.

Prepare the request buffer for storing attribute names in the Optional Attribute Names list by
calling NWDSBeginClassltem (page 110).

Place the desired attribute names in the Optional Attribute Names list by calling
NWDSPutClassltem (page 319) once for each attribute name to be added to the list.

Add the object-class definition to the eDirectory Schema by calling NWDSDefineClass
(page 137).
Free the request buffer by calling NWDSFreeBuf (page 158).

NOTE: If you do not have any object names or attribute names you want to add to one of the lists,
you must still call NWDSBeginClassItem (page 110) to move to the list. You then immediately call
NWDSBeginClassltem (page 110) again to move to the next list.

See Also:

*

*

crclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
“Valid Class and Attribute Names”

2.6.2 Creating an Attribute Definition

1
2

Declare a structure of type Attr Info T (page 433) and fill it.
Create a new attribute definition to define the attribute by calling NWDSDefineAttr
(page 135).

NWDSDefineAttr requires three arguments: the directory context handle, the name of the new
attribute in a string, and the address of the data structure of the attribute.

See Also:

*

“Reading an Attribute Definition” on page 72

68 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

2.6.3 Deleting a Class Definition

You can delete a class definition using a straightforward function called NWDSRemoveClassDef
(page 357), as shown in the following example:
ccode = NWDSRemoveClassDef (context, "Toaster");
if (ccode != 0)
printf ("Error while deleting class definition: %d\n", ccode);

NWDSRemoveClassDef requires two arguments: the NDS context handle and the name of the class
to be deleted.

NOTE: You cannot remove base class definitions, nor can you remove any class until all of the
objects associated with that class have been removed from the eDirectory tree.

See Also:

+ “Listing Containable Classes” on page 69

2.6.4 Deleting an Attribute Definition

Delete an attribute definition by calling NWDSRemoveAttrDef (page 355). If you wanted to delete
the attribute “Toast Setting”, you would enter the following code:
ccode = NWDSRemoveAttrDef (context, "Toast Setting");
if (ccode != 0)
printf ("Error while removing attribute: %d\n", ccode);

This function requires only two arguments: the NDS context handle and the name of the attribute to
be deleted.

NOTE: You cannot remove an attribute that is part of the Base class, nor can you remove an
attribute that you have added to the Base class definition.

See Also:

¢ “Creating a Class Definition” on page 67

2.6.5 Listing Containable Classes

Use this procedure to list the object classes that can be contained by (are subordinate to) a specified
object.

1 Allocate a result buffer by calling NWDSAllocBuf (page 95). (The buffer does not need to be
initialized since it is a result buffer.)
2 Set iterationHandle to NO_MORE ITERARTIONS.

3 Retrieve the object classes the parent object can contain by calling
NWDSListContainableClasses (page 258).

4 Determine the number of object-class names contained in the buffer by calling
NWDSGetClassltemCount (page 189).

5 For each object class name in the result buffer, retrieve the name by calling
NWDSGetClassltem (page 187).

Tasks

69

6 If the value of the iteration handle is not equal to NO_MORE_ITERATIONS, go to Step 3.
Otherwise, go to Step 7.

7 Free the result buffer by calling NWDSFreeBuf (page 158).

Aborting Iterative Operations

If you need information on aborting an iterative operation, see “Controlling Iterations” on page 27.

See Also:

¢ “Retrieving Syntax Names and Definitions” on page 73

2.6.6 Modifying a Class Definition

Optional attributes can be added to an object class definition by using the following steps:

1 Allocate a request buffer by calling NWDSAllocBuf (page 95).

2 Initialize the request buffer for a DS MODIFY_ CLASS DEF operation by calling
NWDSInitBuf (page 242).

3 For each optional attribute to be added to the class definition, store the attribute’s name in the
request buffer by calling NWDSPutAttrName (page 308).

4 Modify the object class definition by calling NWDSModifyClassDef (page 281).
5 Free the request buffer by calling NWDSFreeBuf (page 158).

See Also:

¢ “Reading a Class Definition” on page 70

2.6.7 Reading a Class Definition

Use the following steps to retrieve information about object-class definitions in the eDirectory
Schema.

1 Allocate a request buffer by calling NWDSAllocBuf (page 95). (If you are retrieving
information about all class definitions, you do not need a request buffer and can skip Steps 1
through 3.)

2 Initialize the request buffer fora DSV_READ CLASS DEF operation by calling
NWDSInitBuf (page 242).

3 For each object class you want to receive information about, store the object-class name in the
request buffer by calling NWDSPutClassName (page 321).

4 Allocate a result buffer by calling NWDSAllocBuf (page 95). (It does not need to be initialized
since it is a result buffer.)

5 Set the contents of the iteration handle to NO_MORE_ITERATIONS.
6 Retrieve the object-class information by calling NWDSReadClassDef (page 333).

7 Determine the number of object classes whose information is in the result buffer by calling
NWDSGetClassDefCount (page 185).

8 If you have chosen object names and definitions, retrieve each object-class definition from the
buffer by using the steps in the “Object Class Procedure List” that follows this list.

70 NDK: Novell eDirectory Core Services

9 If the iteration handle is not set to NO_MORE _ITERATIONS, loop to Step 6 to retrieve more
information about object classes. Otherwise, go to Step 10.

10 Free the request buffer by calling NWDSFreeBuf (page 158).
11 Free the result buffer by calling NWDSFreeBuf (page 158).

Object Class Procedure List. For each object-class definition in the buffer, take the following steps
to remove the information:

1 Read the name (and other information) of the current object class whose definition is in the
buffer by calling NWDSGetClassDef (page 183).

If you called NWDSReadClassDef (page 333) with infoType set to DS INFO CLASS DEFS,
skip the rest of the following steps. With this infoType, the NWDSGetClassDef function
retrieves all the information about the class from the buffer. Repeat Step 1 for each object-class
definition in the buffer.

2 Move to the result buffer’s Super Class Names list and determine the number of super-class
names in the list by calling NWDSGetClassItemCount (page 189). (Moving to the list and
determining the number of class names is accomplished with one call to
NWDSGetClassItemCount (page 189).)

3 For each super-class name in the Super Class Names list, retrieve the super-class name by
calling NWDSGetClassltem (page 187).

4 Move to the result buffer’s Containment Class Names list and determine the number of
containment-class names in the list by calling NWDSGetClassltemCount (page 189).

5 For each containment class name in the Containment Class Names list, retrieve the
containment-class name by calling NWDSGetClassltem (page 187).

6 Move to the result buffer’s Naming Attribute Names list and determine the number of naming-
attribute names in the list by calling NWDSGetClassItemCount (page 189).

7 For each naming-attribute name in the Naming Attribute Names list, retrieve the naming-
attribute name by calling NWDSGetClassltem (page 187).

8 Move to the result buffer’s Mandatory Attribute Names list and determine the number of
mandatory-attribute names in the list by calling NWDSGetClassltemCount (page 189).

9 For each mandatory-attribute name in the Mandatory Attribute Names list, retrieve the naming
attribute name by calling NWDSGetClassltem (page 187).

10 Move to the result buffer’s Optional Attribute Names list and determine the number of
optional-attribute names in the list by calling NWDSGetClassltemCount (page 189).

11 For each optional-attribute name in the Optional Attribute Names list, retrieve the optional-
attribute name by calling NWDSGetClassltem (page 187).

If you want to determine the names of all of the classes and their definitions, use
NWDSReadClassDef (page 333) as follows:
ccode = NWDSReadClassDef (context, DS CLASS DEF NAMES, TRUE, NULL,
&iterationHandle, outBuffer);
if (ccode != 0)
printf ("Error while reading class definition: %d\n", ccode);

NOTE: A call to NWDSReadClassDef (page 333) returns only the attributes that were defined for
that particular class. It does not return the attributes that were inherited, but it does return the name

Tasks

7

of the super class. To find all of the attributes available for a class, call NWDSReadClassDef for
each super class until you reach Top.

See Also:

*

*

rdclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
crclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

2.6.8 Reading an Attribute Definition

To retrieve information about selected attribute definitions use the following steps:

1

10
1"

Allocate a request buffer by calling NWDSAllocBuf (page 95). (If you want information about
all attributes, you do not need a request buffer and can skip Steps 1 through 3.

Initialize the request buffer fora DSV_READ ATTR_DEF operation by calling NWDSInitBuf
(page 242).

For each attribute whose information you want to retrieve, store the attribute’s name in the
request buffer by calling NWDSPutAttrName (page 308).

Allocate a result buffer by calling NWDSAIllocBuf (page 95). (This buffer does not need to be
initialized since it is a result buffer.)

Set the contents of the iteration handle to NO_MORE ITERATIONS.

Call NWDSReadAttrDef (page 330) with infoType set to DS ATTR_DEF NAMES to retrieve
names only, or set to DS_ATRR_DEFS to retrieve names and attribute definitions. Set allAttrs
to FALSE if you are using a request buffer, or to TRUE if you are not using a request buffer.

Determine the number of attributes whose information is in the result buffer by calling
NWDSGetAttrCount (page 169).

For each attribute in the buffer, remove the attribute information by calling NWDSGetAttrDef
(page 171).

If the iteration handle is not set to NO_MORE_ITERATIONS, loop to Step 6 to retrieve
additional attribute information. Otherwise, go to Step 10.

Free the request buffer by calling NWDSFreeBuf (page 158).
Free the result buffer by calling NWDSFreeBuf (page 158).

Reading an attribute definition by using NWDSReadAttrDef (page 330) is shown in the following
example:

ccode = NWDSReadAttrDef (context, DS ATTR DEFS, FALSE, inBuf,

if

&iterationHandle, outBuf);
(ccode !'= 0)
printf ("Error reading attribute definition: %d\n", ccode);

See Also:

*

*

rdattdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)
readinfo.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm)

72 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

2.6.9 Retrieving Syntax Names and Definitions

To retrieve names and definitions for all syntaxes in the eDirectory Schema, use the following steps:

1

7

Allocate memory for the result buffer by calling NWDSAllocBuf (page 95). (This buffer does
not need to be initializes, since it is a result buffer.)

Set the contents of the iteration handle to NO_ MORE_ITERATIONS.

Call NWDSReadSyntaxes (page 348) with infoType =DS_SYNTAX DEFS, allSyntaxes
=TRUE, and syntaxNames =NULL.

Determine the number of syntax definitions in the result buffer by calling
NWDSGetSyntaxCount (page 236).

For each syntax in the result buffer, retrieve the syntax name and definition by calling
NWDSGetSyntaxDef (page 238).

If the contents of the iteration handle is not set to NO_MORE_ITERATIONS, loop to Step 3.
Otherwise, go to Step 7.

Free the result buffer by calling NWDSFreeBuf (page 158).

To retrieve information about specific syntaxes, rather than all syntaxes in the eDirectory Schema,
do the following:

1 Allocate memory for the request buffer by calling NWDSAllocBuf (page 95).

10
1"

Initialize the request buffer for a DSV READ SYNTAXES operation by calling
NWDSInitBuf (page 242).

For each syntax whose information you want to retrieve, store the syntax’s name in the request
buffer by calling NWDSPutSyntaxName (page 325).

Allocate memory for the result buffer by calling NWDSAllocBuf (page 95). (This buffer does
not need to be initialized since it is a result buffer.)

Set the contents of the iteration handle to NO_MORE ITERATIONS.

Call NWDSReadSyntaxes (page 348) with infoType =DS_SYNTAX DEFS, allSyntaxes
=FALSE, and syntaxNames =the address of the request buffer.

Determine the number of syntax definitions in the result buffer by calling
NWDSGetSyntaxCount (page 236).

For each syntax in the buffer, retrieve the syntax name and definition by calling
NWDSGetSyntaxDef (page 238).

If the contents of the iteration handle is not set to NO_MORE_ITERATIONS, loop to Step 6.
Otherwise, go to Step 10.

Free the request buffer by calling NWDSFreeBuf (page 158).
Free the result buffer by calling NWDSFreeBuf (page 158).

See Also:

*

“Creating an Attribute Definition” on page 68

Tasks

73

74 NDK: Novell eDirectory Core Services

Functions

The following eDirectory services have been separated out into separate books:

¢ NDK: eDirectory Event Services
¢ NDK: Novell eDirectory Iterator Services
¢ NDK: eDirectory Backup Services

IMPORTANT: All the NWDS functions pass in a context handle parameter. This parameter affects
whether the function uses distinguished names or relative distinguished names. For more
information, see Section 1.1, “Context Handles,” on page 15.

This chapter lists alphabetically the core Novell® eDirectory™ functions and describes their
purpose, syntax, parameters, and return codes.
* “NWDSAbbreviateName” on page 80
+ “NWDSAbortPartitionOperation” on page 82
+ “NWDSAddFilterToken” on page 84
+ “NWDSAddObject” on page 87
+ “NWDSAddPartition (obsolete—moved from .h file 11/99)” on page 90
* “NWDSAddReplica” on page 91
* “NWDSAddSecurityEquiv” on page 93
+ “NWDSAIllocBuf” on page 95
+ “NWDSAIllocFilter” on page 97
+ “NWDSAuditGetObjectID (obsolete 06/03)” on page 99
+ “NWDSAuthenticate (obsolete 06/03)” on page 101
* “NWDSAuthenticateConn” on page 103
* “NWDSAuthenticateConnEx” on page 105
+ “NWDSBackupObject” on page 107
+ “NWDSBeginClassltem” on page 110
+ “NWDSCanDSAuthenticate” on page 112
¢+ “NWDSCanonicalizeName” on page 114
+ “NWDSChangeObjectPassword” on page 116
+ “NWDSChangePwdEx” on page 119
+ “NWDSChangeReplicaType” on page 122
+ “NWDSCIStringsMatch” on page 124
+ “NWDSCloselteration” on page 126
* “NWDSCompare” on page 128
* “NWDSComputeAttrValSize” on page 130
+ “NWDSCreateContext (obsolete—moved from .h file 6/99)” on page 132

Functions

75

* “NWDSCreateContextHandle” on page 133

¢ “NWDSDefineAttr” on page 135

* “NWDSDefineClass” on page 137

+ “NWDSDelFilterToken” on page 140

+ “NWDSDuplicateContext (obsolete 03/99)” on page 142
+ “NWDSDuplicateContextHandle” on page 144
+ “NWDSExtSyncList” on page 146

+ “NWDSExtSyncRead” on page 150

* “NWDSExtSyncSearch” on page 154

+ “NWDSFreeBuf” on page 158

+ “NWDSFreeContext” on page 160

+ “NWDSFreeFilter” on page 162

+ “NWDSGenerateKeyPairEx” on page 164

+ “NWDSGenerateObjectKeyPair” on page 167
* “NWDSGetAttrCount” on page 169

+ “NWDSGetAttrDef” on page 171

+ “NWDSGetAttrName” on page 173

+ “NWDSGetAttrVal” on page 175

+ “NWDSGetAttrValFlags” on page 177

* “NWDSGetAttrValModTime” on page 179

+ “NWDSGetBinderyContext” on page 181

* “NWDSGetClassDef” on page 183

+ “NWDSGetClassDefCount” on page 185

+ “NWDSGetClassItem” on page 187

+ “NWDSGetClassIltemCount” on page 189

* “NWDSGetContext” on page 191

* “NWDSGetCountByClassAndName” on page 193
+ “NWDSGetCurrentUser” on page 196

* “NWDSGetDefNameContext” on page 197

+ “NWDSGetDSIInfo” on page 199

¢ “NWDSGetDSVerInfo” on page 201

+ “NWDSGetEffectiveRights” on page 203

* “NWDSGetMonitoredConnRef” on page 206
* “NWDSGetNDSInfo” on page 208

+ “NWDSGetObjectCount” on page 210

* “NWDSGetObjectHostServerAddress” on page 212
* “NWDSGetObjectName” on page 214

¢+ “NWDSGetObjectNameAndInfo” on page 217

76 NDK: Novell eDirectory Core Services

“NWDSGetPartitionExtInfo” on page 220
“NWDSGetPartitionExtInfoPtr” on page 222
“NWDSGetPartitionInfo” on page 224
“NWDSGetPartitionRoot” on page 226
“NWDSGetServerAddresses (obsolete 3/98)” on page 228
“NWDSGetServerAddresses2” on page 230
“NWDSGetServerDN” on page 232
“NWDSGetServerName” on page 234
“NWDSGetSyntaxCount” on page 236
“NWDSGetSyntaxDef” on page 238
“NWDSGetSyntaxID” on page 240
“NWDSInitBuf” on page 242
“NWDSInspectEntry” on page 244
“NWDSJoinPartitions” on page 246
“NWDSList” on page 248
“NWDSListAttrsEffectiveRights” on page 251
“NWDSListByClassAndName” on page 254
“NWDSListContainableClasses” on page 258
“NWDSListContainers” on page 261
“NWDSListPartitions” on page 264
“NWDSListPartitionsExtInfo” on page 267
“NWDSLogin” on page 270
“NWDSLoginEx” on page 272
“NWDSLoginAsServer” on page 274
“NWDSLogout” on page 275
“NWDSMapIDToName” on page 277
“NWDSMapNameTolID” on page 279
“NWDSModifyClassDef” on page 281
“NWDSModifyDN” on page 283
“NWDSModifyObject” on page 286
“NWDSModifyRDN” on page 289
“NWDSMoveObject” on page 292
“NWDSMutateObject” on page 295
“NWDSOpenConnToNDSServer” on page 297
“NWDSOpenMonitoredConn” on page 299
“NWDSOpenStream” on page 301
“NWDSPartitionReceiveAllUpdates™ on page 304
“NWDSPartitionSendAllUpdates” on page 306

Functions 77

+ “NWDSPutAttrName” on page 308

+ “NWDSPutAttrNameAndVal” on page 310

¢ “NWDSPutAttrVal” on page 312

+ “NWDSPutChange” on page 314

+ “NWDSPutChangeAndVal” on page 316

+ “NWDSPutClassltem” on page 319

¢+ “NWDSPutClassName” on page 321

+ “NWDSPutFilter” on page 323

+ “NWDSPutSyntaxName” on page 325

+ “NWDSRead” on page 327

+ “NWDSReadAttrDef” on page 330

+ “NWDSReadClassDef” on page 333

¢+ “NWDSReadNDSInfo” on page 336

+* “NWDSReadObjectDSIInfo” on page 338

+ “NWDSReadObjectIinfo” on page 340

+ “NWDSReadReferences” on page 342

+ “NWDSReadSyntaxDef” on page 346

+ “NWDSReadSyntaxes” on page 348

¢ “NWDSReloadDS” on page 351

* “NWDSRemoveAllTypes” on page 353

* “NWDSRemoveAttrDef” on page 355

* “NWDSRemoveClassDef” on page 357

+ “NWDSRemoveObject” on page 359

+ “NWDSRemovePartition” on page 361

+ “NWDSRemoveReplica” on page 363

* “NWDSRemSecurityEquiv”’ on page 365

+ “NWDSRepairTimeStamps™ on page 367

+ “NWDSReplaceAttrNameAbbrev” on page 369
+ “NWDSResolveName” on page 371

¢ “NWDSRestoreObject” on page 373

+ “NWDSReturnBlockOfAvailableTrees” on page 376
¢ “NWDSScanConnsForTrees” on page 379

* “NWDSScanForAvailableTrees” on page 381
* “NWDSSearch” on page 383

+ “NWDSSetContext” on page 387

+ “NWDSSetCurrentUser” on page 389

* “NWDSSetDefNameContext” on page 390

* “NWDSSetMonitoredConnection (obsolete 06/03)” on page 392

78 NDK: Novell eDirectory Core Services

“NWDSSplitPartition” on page 394
“NWDSSyncPartition” on page 396
“NWDSSyncReplicaToServer” on page 398
“NWDSSyncSchema” on page 400

“NWDSUnlockConnection (obsolete 06/03)”” on page 402

“NWDS VerifyObjectPassword” on page 404
“NWDS VerifyPwdEx” on page 406
“NWDSWhoAmlI” on page 408
“NWGetDefaultNameContext” on page 410
“NWGetFileServerUTCTime” on page 412
“NWGetNumConnections” on page 414
“NWGetNWNetVersion” on page 415
“NWGetPreferredConnName” on page 417
“NWIsDSAuthenticated” on page 419
“NWIsDSServer” on page 421
“NWNetlnit” on page 423

“NWNetTerm” on page 425
“NWSetDefaultNameContext” on page 427
“NWSetPreferredDSTree” on page 429

Functions

79

NWDSAbbreviateName

Converts an NDS name (including the naming attributes) to its shortest form relative to a specified
name context.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>

or

#include <nwdsname.h>
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAbbreviateName (
NWDSContextHandle context,

pnstr8 inName,
pnstr8 abbreviatedName) ;
Pascal

uses netwin32

Function NWDSAbbreviateName
(context : NWDSContextHandle;
inName : pnstr8;
abbreviatedName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

inName

(IN) Points to the object name to be abbreviated.

abbreviatedName

(OUT) Points to the abbreviated form of the name.

Return Values

0x0000 0000 SUCCESSFUL

80 NDK: Novell eDirectory Core Services

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The caller must allocate space for the abbreviated name. The size of the allocated memory is
((IMAX_RDN_CHARS)+1)*sizeof(character size), where character size is 1 for single-byte
characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

If the context flag associated with DCV_TYPELESS NAMES is set on, the types are removed
where possible. For example, the name
CN=Elmer Fudd.OU=Looney Tunes.O=Acme

with a context of OU=Looney Tunes.O=Acme converts to
Elmer Fudd.

If the context flag associated with DCV_TYPELESS NAMES is set off, the name converts to
CN=Elmer Fudd.

NCP Calls

None

See Also

NWDSCanonicalizeName (page 114)

Functions

81

NWDSAbortPartitionOperation

Aborts a partition operation in progress.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAbortPartitionOperation (
NWDSContextHandle context,
pnstr8 partitionRoot) ;

Pascal

uses netwin32

Function NWDSAbortPartitionOperation
(context : NWDSContextHandle;
partitionRoot : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the root object name for the partition.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

82 NDK: Novell eDirectory Core Services

Remarks

Two examples of partition operations are operations splitting a partition and joining a partition.

If possible, NWDSAbortPartitionOperation returns the partition to its state prior to the partition
operation. If the partition operation cannot be aborted, NWDSAbortPartitionOperation returns
ERR_CANNOT_ ABORT.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSJoinPartitions (page 246), NWDSSplitPartition (page 394)

Functions

83

NWDSAddFilterToken

Adds a node to the search filter expression tree.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsfilt.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAddFilterToken (

pFilter Cursor T cur,

nuintlo tok,

nptr val,

nuint32 syntax) ;
Pascal

uses netwin32

Function NWDSAddFilterToken
(cur : pFilter Cursor T;
tok : nuintlé6;
val : nptr;
syntax : nuint32

) : NWDSCCODE;

Parameters

cur

(IN) Points to a Filter Cursor_T, which defines the current insertion point in the filter
expression tree.

tok

(IN) Specifies the token to be added to the filter expression tree (see Section 5.13, “Filter
Tokens,” on page 474).

val

(IN) Points to either the attribute name or the attribute value, according to the token being
added.

84 NDK: Novell eDirectory Core Services

syntax

(IN) Specifies the attribute syntax associated with the val parameter (see Section 5.26, “Syntax
IDs,” on page 487).

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Each node contains a token and a syntax with an associated value. The relationship between the tok,
val, and syntax parameters is as follows:

¢ Ifthe tok parameter is FTOK_ANAME (meaning attribute name), the val parameter must point
to a copy of the attribute name, and the syntax parameter must be set to the appropriate attribute
syntax ID.

¢ Ifthe tok parameter is FTOK AVAL (meaning attribute value), the val parameter must point to
a copy of the attribute value, and the syntax parameter must be set to the appropriate attribute
syntax ID.

¢ Ifthe tok parameter is neither FTOK_ANAME or FTOK AVAL, the val and syntax parameters
are ignored and can be set to NULL.

The val parameter must point to a dynamically allocated memory buffer that can be freed by calling
either the NWDSPutFilter or NWDSAddFilterToken function.

The NWDSPutFilter function frees up the memory associated with the expression tree. However, if
NWDSAddFilterToken returns an error while you are creating an expression tree, you should not
call the NWDSPutFilter function, but call the NWDSFreeFilter function to free up the memory
associated with the expression tree.

The expect field of the cur parameter contains a bit-map representation of the valid token at the
current position in the tree. The tok parameter must correspond to one of these tokens. If
NWDSAddFilterToken returns SUCCESSFUL, the expect field is updated according to the next
position in the tree (the insertion point of the next token).

Parsing of the token expression list is performed by NWDSAddFilterToken.

For information about how to create a search filter and for more details about eDirectory searches,
see Section 1.4, “Search Requests,” on page 30. For step-by-step instructions, see “Searching
eDirectory” on page 63. For sample code, see ndssearc.c (http://developer.novell.com/ndk/doc/
samplecode/ndslib_sample/index.htm).

NCP Calls

None

Functions

85

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

See Also

NWDSAIllocFilter (page 97), NWDSDelFilterToken (page 140), NWDSFreeFilter (page 162),
NWDSPutFilter (page 323)

86 NDK: Novell eDirectory Core Services

NWDSAddObject

Adds an object to the eDirectory tree.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAddObject (
NWDSContextHandle context,

pnstr8 objectName,

pnint ptr iterationHandle,

nbool8 more,

pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSAddObject
(context : NWDSContextHandle;
objectName : pnstr8;
iterationHandle : pnint ptr;
more : nboolS8;
objectInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName
(IN) Points to the name of the object to be added.

iterationHandle
(IN) Points to the iteration number. This should be set to NO_MORE ITERATIONS initially.

Functions 87

more

(IN) Specifies whether additional information will be returned:

0 No more information
nonzero More information will be returned

objectInfo

(IN) Points to a request buffer containing the attribute values for the new object.

Return Values

These are common return value.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

For NWDSAddObject to succeed, the new object’s immediate superior must already exist.

For information on setting the NDS context for the context parameter, see Section 1.1, “Context
Handles,” on page 15.

The objectName parameter identifies the name of the object to be added. For example,
CN=Elmer Fudd.OU=Looney Tunes.O=Acme.C=US.

The object can be an alias entry.

NOTE: If the iterationHandle parameter is set to 0 initially, NWDSAddObject will ignore the value
and process the request as if -1 was passed.

If the more parameter is set to nonzero, NWDSAddODbject will perform the necessary steps to
iteratively call itself.

In order to iteratively call NWDSAddObject, the DS.NLM file must support the iteration feature or
ERR_BUFFER_FULL will be returned.

88 NDK: Novell eDirectory Core Services

All of an object’s mandatory attributes must be supplied for NWDSAddODbject to succeed. For
example, Object Class is a mandatory attribute for any object that is added. This is the base class of
the object.

While eDirectory ensures that new objects conform to the eDirectory schema, if an alias is being
created for an existing object, no check is made to ensure the alias’s Aliased Object Name attribute
points to a valid object. This check occurs on the server when the aliased object name is translated to
a local ID.

NWDSAddODbject never dereferences aliases. The setting of the context flag associated with
DCV_DEREF_ALIASES in the context field associated with DCK_FLAGS is ignored.

For more information, see Section 1.6, “Add Object Requests,” on page 38.
For step-by-step instructions, see “Adding an eDirectory Object” on page 58.

For sample code, see ndsaddl.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/
index.htm).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSListContainableClasses (page 258), NWDSModifyObject (page 286), NWDSRemoveObject
(page 359)

Functions

89

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

NWDSAddPartition (obsolete—moved from .h file
11/99)

Was last documented in September 1999. Call NWDSAddReplica (page 91) and
NWDSSplitPartition (page 394) instead.

90 NDK: Novell eDirectory Core Services

NWDSAddReplica

Adds a replica of an existing eDirectory partition to a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAddReplica (
NWDSContextHandle context,

pnstr8 server,

pnstr8 partitionRoot ;

nuint32 replicaType) ;
Pascal

uses netwin32

Function NWDSAddReplica
(context : NWDSContextHandle;
server : pnstr8;
partitionRoot : pnstr8;
replicaType : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the name of the server where the replica is to be stored.

partitionRoot

(IN) Points to the name of the root object of the eDirectory partition to be replicated.

Functions 91

replicaType
(IN) Specifies the type of the new replica (see Section 5.23, “Replica Types,” on page 483).

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The partition must be created beforehand by calling NWDSSplitPartition.

NOTE: You cannot create a master replica type (RT_MASTER) with NWDSAddReplica. To make
a new replica the mater replica, use NWDSChangeReplicaType.

Aliases are never dereferenced by NWDSAddReplica. The setting of the NDS context flag
associated with DCV_DEREF ALIASES is not relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSChangeReplicaType (page 122), NWDSRemoveReplica (page 363), NWDSSplitPartition
(page 394)

92 NDK: Novell eDirectory Core Services

NWDSAddSecurityEquiv

Adds to the specified object’s security equivalence.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAddSecurityEquiv (
NWDSContextHandle context,

pnstr8 equalFrom,
pnstr8 equalTo) ;
Pascal

uses netwin32

Function NWDSAddSecurityEquiv
(context : NWDSContextHandle;
equalFrom : pnstr8;
equalTo : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

equalFrom

(IN) Points to the name of the object that will receive security equivalence.

equalTo

(IN) Points to the name to be added to the Security Equivalence attribute of the object specified
by equalFrom.

Functions 93

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

If NWDSAddSecurityEquiv is successful, it will place the name of the object specified by equalTo
into the Security Equals attribute of the object specified by the equalFrom parameter. (Security
Equals is a multivalued attribute.)

If the object specified by the equalFrom parameter does not contain sufficient rights to add the
security equivalence to its list, NWDSAddSecurityEquiv will return ERR_NO_ACCESS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRemSecurityEquiv (page 365)

94 NDK: Novell eDirectory Core Services

NWDSAIllocBuf

Allocates a Buf T structure for use as a request or result buffer parameter to an eDirectory function.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAllocBuf (
size t size,
ppBuf T buf);

Pascal

uses netwin32

Function NWDSAllocBuf
(size : size t;
buf : ppBuf T

) : NWDSCCODE;

Parameters
size
(IN) Specifies the number of bytes to allocate to the buffer.

buf
(OUT) Points to Buf T containing the memory allocated for the buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

The following two message sizes are defined in NWDSDC.H:

Functions

95

4096 DEFAULT MESSAGE LEN
64512 MAX_MESSAGE_LEN

The total bytes allocated for the buffer is size +sizeof(Buf T)+3 which should be less than 64K
bytes.

For most operations, the size of DEFAULT MESSAGE_LEN can be used. It is up to the developer
to determine by experimentation if another size optimizes an application’s performance.

When determining a buffer size, keep in mind the effects of buffer size. A smaller buffer means
multiple iterations of an operation might need to be performed to retrieve all of the operation’s
results. On the other hand, using a large buffer might allow the operation to be completed in one
step, but cause a significant delay for the user.

If NWDSAIllocBuf is successful, buf is set to point to the allocated buffer.

NCP Calls

None

See Also

NWDSFreeBuf (page 158), NWDSInitBuf (page 242)

96 NDK: Novell eDirectory Core Services

NWDSAIllocFilter

Allocates a filter expression tree and initializes a cursor to the current insertion point.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsfilt.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAllocFilter (
ppFilter Cursor T cur) ;

Pascal
uses netwin32
Function NWDSAllocFilter

(cur : ppFilter Cursor T
) : NWDSCCODE;

Parameters

cur

(IN/OUT) Points to the current filter-cursor position in the allocated filter.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Search tokens are added to the filter with calls to NWDSAddFilterToken.

NCP Calls

None

Functions

97

See Also

NWDSAddFilterToken (page 84), NWDSDelFilterToken (page 140), NWDSFreeFilter (page 162),
NWDSPutFilter (page 323)

98 NDK: Novell eDirectory Core Services

NWDSAuditGetObjectID (obsolete 06/03)

Returns a connection handle and an object ID for the object name, but is now obsolete.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsaud.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAuditGetObjectID (

NWDSContextHandle context,

pnstr8 objectName,

NWCONN_ HANDLE N _FAR *conn,

pnuint32 objectID);
Pascal

uses netwin32

Function NWDSAuditGetObjectID
(context : NWDSContextHandle;
objectName : pnstr8;

Var conn : NWCONN_ HANDLE;
objectID : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the directory context for the request.

objectName

(IN) Points to the name of the object to get the ID for.

conn

(OUT) Points to the connection handle where the object resides.

Functions

99

objectID
(OUT) Points to the eDirectory object ID.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The returned connection handle is the NetWare server where the object is stored.

Use NWDSResolveName in place of this function.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddObject (page 87), NWDSResolveName (page 371)

100 NDK: Novell eDirectory Core Services

NWDSAuthenticate (obsolete 06/03)

Establishes an authenticated connection to a secured NetWare server using the unauthenticated
connection and local data cached by calling NWDSLogin, but is now obsolete.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSAuthenticate (
NWCONN HANDLE conn,
nflag32 optionsFlag,
PNWDS Session Key T sessionKey) ;

Pascal

uses netwin32

Function NWDSAuthenticate
(conn : NWCONN_HANDLE;
optionsFlag : nflag32;

sessionKey : pNWDS Session Key T
) : NWDSCCODE;

Parameters
conn
(IN) Specifies the client’s initial unauthenticated connection handle.

optionsFlag

(IN) Specifies reserved; pass in a zero (0).

sessionKey

(IN) Points to reserved; pass in NULL.

Functions 101

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSAuthenticate first checks to see if the specified connection is authenticated. If the connection
is authenticated, NWDSAuthenticate will return SUCCESSFUL and end the call.

Use NWDSAuthenticateConn or NWDSAuthenticateConnEx in place of this function.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAuthenticateConn (page 103), NWDSLogin (page 270)

102 NDK: Novell eDirectory Core Services

NWDSAuthenticateConn

Authenticates and licenses an established connection to a NetWare server.
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsasa.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSAuthenticateConn (
NWDSContextHandle context,
NWCONN_HANDLE connHandle) ;

Pascal

uses netwin32

Function NWDSAuthenticateConn
(context : NWDSContextHandle;
connHandle : NWCONN_ HANDLE

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle to authenticate.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Functions 103

Remarks

NWDSAuthenticateConn authenticates and licenses the connection using the identity established by
calling NWDSLogin. An authenticated, licensed connection has access to eDirectory and the file
system.

The context handle is used to indicate which tree (and hence which identity) to use in authenticating
the connection handle. If the underlying requester does not support multiple tree authentications, the
tree value of the context handle is ignored.

If the specified connection is already authenticated, the function returns SUCCESSFUL and ends
the call.

NCP Calls

0x2222 104 2 Send eDirectory Fragmented Request/Reply

See Also

NWDSOpenConnToNDSServer (page 297), NWCCOpenConnByName (http://
developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk645.html)

104 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk645.html

NWDSAuthenticateConnEx

Authenticates, but does not license, an established connection to a NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsasa.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSAuthenticateConnEx (
NWDSContextHandle context,
NWCONN_HANDLE connHandle) ;

Pascal

uses netwin32

Function NWDSAuthenticateConnEx
(context : NWDSContextHandle;
connHandle : NWCONN_ HANDLE

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle to authenticate.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Functions 105

Remarks

NWDSAuthenticateConnEx authenticates the connection using the identity, established by calling
NWDSLogin, of the object derived from the context handle. The connection is authenticated not
licensed. Such connections have access to eDirectory; to access the file system the connection must
be licensed.

The context handle is used to indicate which tree (and hence which identity) to use in authenticating
the connection handle. If the underlying requester does not support multiple tree authentications, the
tree value of the context handle is ignored.

If the specified connection is already authenticated, the function returns SUCCESSFUL and ends
the call.

To license an authenticated connection, call NWCCLicenseConn (http://developer.novell.com/ndk/
doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html).

NCP Calls

0x2222 104 2 Send eDirectory Fragmented Request/Reply

See Also

NWDSOpenConnToNDSServer (page 297), NWDSOpenMonitoredConn (page 299),
NWCCOpenConnByName (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/
clib/cmgnxenu/data/sdk645.html), NWCCLicenseConn (http://developer.novell.com/ndk/doc/clib/
index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html)

106 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk645.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html

NWDSBackupObject

Backs up the attribute names and values for an object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSBackupObject (
NWDSContextHandle context,

pnstr8 objectName,

pnint ptr iterationHandle,

pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSBackupObject
(context : NWDSContextHandle;
objectName : pnstr8;
iterationHandle : pnint ptr;
objectInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object for which information is to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSBackupObject.

Functions 107

objectInfo

(OUT) Points to the requested attribute names and values.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSBackupObiject is used to back up the attributes and attribute values for one object at a time.
To back up eDirectory, call the NWDSBackupObject function for each object.

iterationHandle is used to control retrieval of results that are larger than the result buffer supplied by
objectlnfo.

Before the initial call to NWDSBackupObject, set the contents of the iteration handle pointed to by
iterationHandle to NO_MORE_ITERATIONS.

When NWDSBackupObject returns from its initial call, if the result buffer holds the complete
results, the location pointed to by iterationHandle is set to NO_MORE_ITERATIONS on return. If
the iteration handle is not set to NO_MORE ITERATIONS, use the iteration handle for subsequent
calls to NWDSBackupObject to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

To abort the operation before retrieving all the information about an object, call
NWDSCloselteration with an operation type of DSV_BACKUP_ENTRY.

IMPORTANT: The information returned in objectInfo must be stored so it can be passed to
NWDSRestoreObject in the expected manner. NWDSRestoreObject expects an nuint32 array
pointer and an nuint8 pointer specifying the length of the information to be restored.

Each time NWDSBackupObject is called, save the number of bytes returned by objectInfo—>
curLen starting from the address pointed to by objectInfo—> data. objectInfo must be worked with
directly; there are no eDirectory functions that will retrieve this information.

108 NDK: Novell eDirectory Core Services

It is the developer’s responsibility to decide how to store the information so it can be restored when

calling NWDSRestoreObject.

The results of NWDSBackupObject are not ordered. Attribute information might not be stored in the

result buffer in alphabetical order.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRestoreObject (page 373)

Functions 109

NWDSBeginClassltem

Begins a class item definition (which is a part of an object class definition) in a request buffer to be
used by a eDirectory Schema function.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSBeginClassItem (
NWDSContextHandle context,
pBuf T buf) ;

Pascal

uses netwin32

Function NWDSBeginClassItem
(context : NWDSContextHandle;
buf : pBuf T

) : NWDSCCODE

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer being prepared.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

110 NDK: Novell eDirectory Core Services

Remarks

The buf parameter points to a Buf T, which is allocated by NWDSAllocBuf and initialized by
NWDSInitBuf for the DSV_DEFINE CLASS operation.

NWDSBeginClassltem is used in conjunction with sName and NWDSPutAttrName to prepare a
request buffer for NWDSDefineClass to use in creating a new object-class definition. This request
buffer must contain a sequence of five sets of class definition item lists. The lists must occur in the
following order:

Super Class Names

Containment Class Names

Naming Attribute Names

Mandatory Attribute Names

A

Optional Attribute Names

If a particular definition item list is empty, NWDSBeginClassItem must still be called for that list.
For example, if the class definition has no mandatory attributes, you must call
NWDSBeginClassltem to move to the Mandatory Attribute Names list and then immediately call
NWDSBeginClassltem again to move to the Optional Attribute Names list.

The complete steps for creating a new object class definition are found in the reference for
NWDSDefineClass.

NCP Calls

None

See Also

NWDSPutClassName (page 321), NWDSPutClassltem (page 319)

Functions 111

NWDSCanDSAuthenticate

Determines if eDirectory credentials exist for the specified tree name.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSCanDSAuthenticate (
NWDSContextHandle context) ;

Pascal
uses netwin32
Function NWDSCanDSAuthenticate

(context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Return Values

These are common return values.

0 No credentials found

1 Credentials exist

Remarks

NWDSCanDSAuthenticate is similar to NWIsDSAuthenticated, but is enabled for multiple tree
environments. NWDSCanDSAuthenticate indicates if eDirectory credentials exist for the tree name
described in the context. If credentials exist for the tree, authentication can be performed to servers
within the tree.

112 NDK: Novell eDirectory Core Services

NCP Calls

None

See Also

NWDSAuthenticateConn (page 103), NWIsDSAuthenticated (page 419)

Functions 113

NWDSCanonicalizeName

Converts an abbreviated name to the canonical form.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsname.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSCanonicalizeName (
NWDSContextHandle context,

pnstr8 objectName,
pnstr8 canonName) ;
Pascal

uses netwin32

Function NWDSCanonicalizeName
(context : NWDSContextHandle;
objectName : pnstr8;
canonName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name to be expressed in canonical form.

canonName

(OUT) Points to the canonical form of the name.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

114 NDK: Novell eDirectory Core Services

Remarks

The canonical form of a name includes the full path of the name (a complete name) with the naming
attribute type specification for each naming component. Standard naming attribute type
abbreviations are used where available. In addition, multiple white spaces are removed from the
name.

For example, if the input is
CN=Elmer Fudd

and the name context value in the context parameter is
OU=Looney Toons.O=Acme

the canonicalized name is
CN=Elmer Fudd.OU=Looney Toons.O=Acme

The objectName parameter supplies the abbreviated form of a eDirectory name. The name can be
typed or typeless. If a typeless name is supplied, the NWDSCanonicalizeName function uses default
typing rules to assign types. The wrong types will be assigned if a component of a typeless name is a
Country, Locality, Tree Root, or domain. For more information about the typing rules and a method
that ensures accurate results, see the DCV_TYPELESS NAMES key in “DCK_FLAGS Key” on
page 18.

The name can also be truncated. It is assumed that a truncated name is relative to the naming path
supplied by the specified context.

The canonName parameter receives the canonical form of the name. The caller must allocate space
for the canonicalized name. The size of the allocated memory is
((MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1 for single-byte
characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

NCP Calls

None

See Also

NWDSAbbreviateName (page 80)

Functions 115

NWDSChangeObjectPassword

Changes the authentication password for an eDirectory object once a public/private key pair has
been assigned. Does not support international or extended characters in passwords.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSChangeObjectPassword (
NWDSContextHandle context,

nflag32 pwdOption,

pnstr8 objectName,

pnstr8 oldPassword,

pnstr8 newPassword) ;
Pascal

uses netwin32

Function NWDSChangeObjectPassword
(context : NWDSContextHandle;
pwdOption : nflag32;
objectName : pnstr8;
oldPassword : pnstr8;
newPassword : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

pwdOption
(IN) Specifies which password to change. Select from the following:

116 NDK: Novell eDirectory Core Services

Value Constant Description

0 ALL_PASSWORDS All passwords are changed.
1 NDS_PASSWORD Only the eDirectory password is changed.
2 NT_PASSWORD Only the NT password is changed (the NT password that
NDS4NT in eDirectory).
4 AD_PASSWORD Only the AD/NT password (serviced by password sync).
objectName

(IN) Points to the object name whose password is to be changed.

oldPassword

(IN) Points to the object’s current password.

newPassword

(IN) Points to the object’s new password.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values”.

Remarks

For NWDSChangeObjectPassword to succeed, oldPassword must be correct. If no value is currently
assigned to the password, oldPassword should point to a zero-length string.

If no new password value is desired, newPassword should point to a zero-length string.

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

The NT_PASSWORD option works only if the eDirectory for NT product has been installed. If this
flag is passed in and the eDirectory for NT product has not been installed, an error is returned.

If the ALL_PASSWORDS option is set, the NDS _PASSWORD operation is performed first. If
successful, other password operations are attempted, but error conditions are not returned for the
other operations.

NOTE: NWDSChangePwdEx (page 119) supports international and extended characters and is
recommended in place of NWDSChangeObjectPassword.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

Functions

117

See Also

NWDSGenerateObjectKeyPair (page 167)

118 NDK: Novell eDirectory Core Services

NWDSChangePwdEXx

Changes the authentication password for an eDirectory object once a public/private key pair has
been assigned. Supports international and extended characters in passwords.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>

or

#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSChangePwdEx (

NWDSContextHandle context,

pnstr8 objectName,

nuint32 pwdFormat,

nptr oldPwd,

nptr newPwd,

nuint32 pwdOption) ;
Pascal

uses netwin32

Function NWDSChangePwdEx

)

(context : NWDSContextHandle;

objectName : pnstr§;
pwdFormat : nuint32;
0ldPwd : nptr;
newPwd : nptr;
pwdOption : nuint32
NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name whose password is to be changed.

Functions 119

pwdFormat
(IN) Specifies the format of the password data. Select from the following:
PWD UNICODE STRING
PWD_UTF8 STRING
PWD _RAW_C STRING
oldPwd

(IN) Points to the object’s current password.

newPwd
(IN) Points to the object’s new password.
pwdOption
(IN) Specifies which password to change. Select from the following:

Value Constant Description

0 ALL PASSWORDS All passwords are changed.

1 NDS_PASSWORD Only the eDirectory password is changed.

2 NT_PASSWORD Only the NT password is changed (the NT password that

NDS4NT in eDirectory).
4 AD_PASSWORD Only the AD/NT password (serviced by password sync).

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values”.

Remarks

For NWDSChangePwdEXx to succeed, oldPwd must be correct. If no value is currently assigned to
the password, oldPassword should point to a zero-length string.

If no new password value is desired, newPwd should point to a zero-length string ("").

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

The NT_PASSWORD option works only if the eDirectory for NT product has been installed. If this
option is set in and the eDirectory for NT product has not been installed, an error is returned.

If the ALL_PASSWORDS option is set, the NDS PASSWORD operation is performed first. If
successful, other password operations are attempted, but error conditions are not returned for the
other operations.

120 NDK: Novell eDirectory Core Services

NOTE: The PWD _RAW_C_STRING password format allows any arbitrary NULL-terminiated
data to be used as a password. Passwords specified with this format are not interoperable with
unicode and UTFS passwords.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSGenerateKeyPairEx (page 164)

Functions 121

NWDSChangeReplicaType

Changes the replica type of a given replica on a given server.
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSChangeReplicaType
NWDSContextHandle context,

pnstr8 replicaName,

pnstr8 server,

nuint32 newReplicaType) ;
Pascal

uses netwin32

Function NWDSChangeReplicaType
(context : NWDSContextHandle;
replicaName : pnstr8;
server : pnstr8;
newReplicaType : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

replicaName

(IN) Points to the root object name of the eDirectory partition whose replica type will be

changed.

server

(IN) Points to the name of the server on which the replica resides.

122 NDK: Novell eDirectory Core Services

newReplicaType

(IN) Specifies the replica type the given replica is to be changed to (see Section 5.23, “Replica
Types,” on page 483).

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

A change in type from read-only to secondary or secondary to read-only affects only the given
replica. A change to RT_MASTER results in the current master being changed to a secondary
replica.

The replica type of the master may not be changed directly by calling NWDSChangeReplicaType.
The replica type of the master replica can change only as a side effect of NWDSChangeReplicaType
changing another replica’s type to RT_MASTER.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSSplitPartition (page 394), NWDSJoinPartitions (page 246), NWDSAddReplica (page 91),
NWDSRemoveReplica (page 363)

Functions 123

NWDSCIStringsMatch

Tests two case ignore strings (defined by CI_String_T) to determine if the two strings are
equivalent.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsname.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSCIStringsMatch (
NWDSContextHandle context,

pnstr8 stringl,

pnstr8 string2,

pnint matches ;)
Pascal

uses netwin32

Function NWDSCIStringsMatch
(context : NWDSContextHandle;
stringl : pnstr8;
string2 : pnstr8;
matches : pnint

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context to be used. It is created by calling
NWDSCreateContextHandle.

stringl

(IN) Points to the first string to compare.
string2

(IN) Points to the second string to compare.

matches

(OUT) Points to a boolean indicating whether the strings match: 0 = Don’t match; 1 = Match.

124 NDK: Novell eDirectory Core Services

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

OxFEOD UNI_NO_DEAFAULT

OxFEOF UNI_HANDLE_MISMATCH
0xFE10 UNI_HANDLE_BAD

OxFED1 ERR_BAD_ CONTEXT

OxFED3 ERR_NOT_ENOUGH_MEMORY
Remarks

Case Ignore String is a syntax used by some of the eDirectory attributes such as CN, Description,
Given Name, Surname, and Title.

Depending on the setting of the DCV_XLATE STRINGS context key, NWDSCIStringsMatch
compares two strings either in the local or Unicode code page. This function ignores leading and
trailing white space, which is either " " (space, 0x0020) or "_" (underscore, 0x005F). Also, it
matches any consecutive internal white space, regardless of quantities. For example, if the string has
a single internal white space character and another has five, NWDSCIStringsMatch matches the
strings. Finally, NWDSCIStringsMatch ignores case in comparisons.

NWDSCIStringsMatch is a local function.

NCP Calls

None

Functions 125

NWDSCloselteration

Frees memory associated with an iteration handle in the event the client chooses to discontinue
iterative calls to the server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>

or

#include <nwdsmisc.h>
#include <nwdsdefs.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSCloselteration (
NWDSContextHandle context,

nint32 iterationHandle,
nuint32 operation);
Pascal

uses netwin32

Function NWDSCloselteration
(context : NWDSContextHandle;

iterationHandle : nint32;
operation : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

iterationHandle

(IN) Specifies the iteration handle previously received from the server.

operation

(IN) Specifies the eDirectory operation associated with iterationHandle (see Section 5.3,
“Buffer Operation Types and Related Functions,” on page 464).

126 NDK: Novell eDirectory Core Services

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

NWDSCloselteration is called to discontinue an iterative operation, such as read, list, and search,
before the operation is complete. In the event the client chooses to discontinue the iterative exchange
with the server, NWDSCloselteration frees memory on both the client and the server and states
information associated with the handle.

Functions such as NWDSList, NWDSRead, and NWDSSearch free the memory and state
information associated with an operation when they return with iterationHandle set to
NO_MORE_ITERATIONS. NWDSCloselteration is called to stop the operation before these
functions set iterationHandle to NO_MORE_ITERATIONS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRead (page 327), NWDSList (page 248), NWDSSearch (page 383),
NWDSListAttrsEffectiveRights (page 251), NWDSBackupObject (page 107),
NWDSRestoreObject (page 373), NWDSListPartitions (page 264), NWDSListContainableClasses
(page 258), NWDSReadAttrDef (page 330), NWDSReadClassDef (page 333)

Functions 127

NWDSCompare

Compares an object’s attribute value with a specified value.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSCompare (
NWDSContextHandle context,

pnstr8 object,

pBuf T buf,

pnbools matched) ;
Pascal

uses netwin32

Function NWDSCompare
(context : NWDSContextHandle;
objectName : pnstr8;
buf : pBuf T;
matched : pnbool8
) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.
object
(IN) Points to the name of the object whose attribute is being compared.

buf

(IN) Points to a request buffer containing the attribute name and value to be compared with the
object’s attribute value.

128 NDK: Novell eDirectory Core Services

matched

(OUT) Points to a boolean value indicating the result of the comparison.

Return Values

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
O0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The comparison is in the form of "attribute name = attribute value." For example, the attribute name
"Description" and the value "PostScript" might be used to determine if a particular printer’s page
description language is PostScript.

The input buffer, buf, should be allocated with the NWDSAIllocBuf function and initialized for the
DSV_COMPARE operation with the NWDSInitBuf function.

The matched parameter receives a Boolean indicating the result of the comparison. The result is
TRUE if the comparison was successful; otherwise, the result is FALSE.

For step-by-step instructions, see “Comparing Attribute Values” on page 58.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRead (page 327)

Functions 129

NWDSComputeAttrValSize

Computes, in conjunction with NWDSGetAttrVal, the size of the attribute value at the current
position in the result buffer.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSComputeAttrValSize (
NWDSContextHandle context,

pBuf T buf,

nuint32 syntaxID,

pnuint32 attrvalSize);
Pascal

uses netwin32

Function NWDSComputeAttrValSize
(context : NWDSContextHandle;
buf : pBuf T;
syntaxID : nuint32;
attrvValSize : pnuint32

) : NWDSCCODE;

Parameters
context

(IN) Specifies the NDS context for the request.
buf

(IN) Points to a result buffer positioned at an attribute value.

syntaxID

(IN) Specifies the numeric ID of the attribute value (see Section 5.26, “Syntax IDs,” on
page 487).

attrValSize
(OUT) Points to the size (in bytes) required to retrieve the attribute.

130 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Since Buf T buffers are opaque to client applications, a client cannot view a result buffer directly to
see the size of the values returned in the buffer. Call NWDSComputeAttrValSize to find the size and
syntax of the current attribute value in the buffer and then dynamically allocate memory of that size
to hold the current attribute’s value. Then retrieve the value by calling NWDSGetAttrVal.

If NWDSRead is called using infoTypes DS_VALUE INFO (3) or DS_ ABBREVIATED VALUE
(4), eDirectory returns the attribute value flags and modification timestamp. If the attribute value has
been deleted, but not synchronized, eDirectory can return a value flag of DS NOT PRESENT
(value not present) and no data. In this case, the attribute value length is zero.
NWDSComputeAttrValSize returns the correct size of 0, and the application should not call
NWDSGetAttrVal to retrieve the data because there is no data to retrieve.

Call NWDSComputeAttrValSize once for each attribute value you retrieve from the result buffer.

The syntaxID parameter identifies the syntax data type the attribute information is stored in. The
data structures associated with the syntaxes are listed in “Attribute Syntax Definitions”. The
enumerated types for syntaxes (such as SYN DIST NAME) are located in NWDSDEFS.H. The
NWDSGetAttrName function returns the syntax ID of the attribute.

The attrValSize parameter points to the size of the attribute value in bytes. This size can be used as
input to a memory allocation request. The size is large enough to contain the attribute value along
with any structure returned by NWDSGetAttrVal.

For complete steps on reading the information from the buffer, see “Reading Attributes of
eDirectory Objects” on page 62.

NCP Calls

None

See Also

NWDSGetAttrVal (page 175)

Functions 131

NWDSCreateContext (obsolete—moved from .h
file 6/99)

Was last documented in June 1999. Call NWDSCreateContextHandle (page 133) instead.

132 NDK: Novell eDirectory Core Services

NWDSCreateContextHandle

Creates a new context handle and initializes it with default values.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSCreateContextHandle (
NWDSContextHandle N FAR *newHandle) ;

Pascal
uses netwin32
Function NWDSCreateContextHandle

(Var newHandle : NWDSContextHandle
) : NWDSCCODE;

Parameters

newHandle

(OUT) Points to the newly created context handle.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSCreateContextHandle allocates a new context handle and initializes the context handle with
default values (see Section 5.7, “Default Context Key Values,” on page 469).

The number of context handles an application can create is limited only by available resources.
Creation can fail if there is insufficient memory or the Unicode tables have not been initialized (see
NWInitUnicodeTables (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/

Functions 133

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/ucod_enu/data/sdk143.html

ucod_enu/data/sdk143.html) (Unicode (http://developer.novell.com/ndk/doc/clib/index.html?page=/
ndk/doc/clib/ucod_enu/data/hjg275fp.html))).

To view or modify context information, use the NWDSGetContext (page 191) and the
NWDSSetContext (page 387) functions.

NCP Calls

None

See Also

NWDSDuplicateContextHandle (page 144), NWDSFreeContext (page 160), NWDSGetContext
(page 191), NWDSSetContext (page 387)

134 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/ucod_enu/data/hjg275fp.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/ucod_enu/data/hjg275fp.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/ucod_enu/data/hjg275fp.html

NWDSDefineAttr

Adds a new attribute definition to the eDirectory schema.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSDefineAttr (
NWDSContextHandle context,

pnstr8 attrName,
pPAttr Info T attrDef) ;
Pascal

uses netwin32

Function NWDSDefineAttr
(context : NWDSContextHandle;
attrName : pnstr8;
attrDef : pAttr Info T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the name for the new attribute.

attrDef

(IN) Points to the remaining information for the new attribute definition.

Return Values

These are common return values.

Functions 135

0x0000 0000
0x8996
0x89E2
Ox89E3
O0x89E4
0x89E5
0x89FD
0x89FD
O0x89FE
Ox89FF

nonzero value

SUCCESSFUL
SERVER_OUT_OF_MEMORY
TOO_FEW_FRAGMENTS
TOO_MANY_FRAGMENTS
PROTOCOL_VIOLATION
SIZE_LIMIT_EXCEEDED
UNKNOWN_REQUEST
INVALID_PACKET_LENGTH
BAD_PACKET

Failure not related to eDirectory

Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

The name of the new attribute must be unique within the eDirectory schema attribute definitions.
The names of the attributes for the base schema are listed in “Base Attribute Definitions” (NDK:
Novell eDirectory Schema Reference). New attributes added by other applications must be read from
the schema on a server by calling NWDSReadAttrDef.

New attribute names should be cleared through Novell Developer Support to guarantee uniqueness.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSDefineClass (page 137)

136 NDK: Novell eDirectory Core Services

NWDSDefineClass

Adds a new object class definition to the eDirectory schema.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSDefineClass (
NWDSContextHandle context,

pnstr8 className,

pClass Info T classInfo,

pBuf T classItems) ;
Pascal

uses netwin32

Function NWDSDefineClass
(context : NWDSContextHandle;
className : pnstr8;
classInfo : pClass Info T;
classItems : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the name of the new object class.

classInfo
(IN) Points to the class flags and ASN.1 ID for the new class.

Functions 137

classItems

(IN) Points to the remaining class definition.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The name of the new object class must be unique within the eDirectory schema class definitions.
The names of the classes for the base schema are listed in “Base Object Class Definitions”. New
object classes added by other applications must be read from the schema on a server by calling
NWDSReadClassDef.

New object class names should be cleared through Novell Developer Support to guarantee
uniqueness.

The classItems parameter points to a request buffer containing additional information that defines
the object. This buffer contains a sequence of five lists containing either class names or attribute
names. The lists must occur in the following order.

. Super Class Names

. Containment Class Names

1

2

3. Naming Attribute Names

4. Mandatory Attribute Names
5

. Optional Attribute Names

For step-by-step instructions, see “Creating a Class Definition” on page 67.

NCP Calls

0x2222 23 17 Get File Server Information

138 NDK: Novell eDirectory Core Services

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSDefineAttr (page 135), NWDSModifyClassDef (page 281)

“Valid Class and Attribute Names” (NDK: Novell eDirectory Schema Reference)

Functions 139

NWDSDelFilterToken

Deletes the most recently added token from a filter expression tree.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsfilt.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSDelFilterToken (

pFilter Cursor T cur,
void (N_FAR N_CDECL *freeVal) (
nuint32 syntax,
nptr val));
Pascal

uses netwin32

Function NWDSDelFilterToken
(cur : pFilter Cursor T;
freevVal : FreeValProc

) : NWDSCCODE;

Parameters

cur

(IN) Points to the current insertion point in the filter expression tree.

freeVal

(IN) Points to the function to be used to free attribute values.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

140 NDK: Novell eDirectory Core Services

Remarks

The freeVal parameter is a pointer to a function freeing the attribute values. The function is passed
the syntax ID and the address of the area to free.The freeVal parameter may be NULL, in which case
no attribute values are freed.

If NWDSDelFilterToken is successful, cur is updated to reflect the current position in the expression
tree (the insertion point of the next token).

For syntax IDs (such as SYN BOOLEAN), see Section 5.26, “Syntax IDs,” on page 487.

NCP Calls

None

See Also

NWDSAddFilterToken (page 84), NWDSAllocFilter (page 97), NWDSFreeFilter (page 162),
NWDSPutFilter (page 323)

Functions 141

NWDSDuplicateContext (obsolete 03/99)

Creates an NDS context and initializes it to the same settings as an existing NDS context. This
function is obsolete. Call NWDSDuplicateContextHandle (page 144) instead.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSDuplicateContext (
NWDSContextHandle oldContext) ;

Pascal
uses netwin32
Function NWDSDuplicateContext

(oldContext : NWDSContextHandle
) : NWDSContextHandle;

Parameters

oldContext
(IN) Specifies the NDS context to duplicate.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL

OxFFFF ERR_CONTEXT_CREATION
FEB8

Remarks

If successful, NWDSDuplicateContext returns a value identifying the created NDS context. The
newly created context will have a copy of the contents of the NDS context specified by oldContext.
If oldContext does not reference a valid NDS context, the new context will be initialized with
default values as in NWDSCreateContextHandle.

142 NDK: Novell eDirectory Core Services

The advantage in calling NWDSDuplicateContext is that it copies the context settings of the existing
context. If you are using context settings that are not the default, NWDSDuplicateContext lets you
avoid making some additional calls to modify the default context settings.

NCP Calls

None

See Also

NWDSCreateContextHandle (page 133), NWDSFreeContext (page 160), NWDSSetContext
(page 387), NWDSGetContext (page 191)

Functions 143

NWDSDuplicateContextHandle

Allocates memory for a new context structure and initializes it with values copied from the source
context structure.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSDuplicateContextHandle (
NWDSContextHandle srcContextHandle,
NWDSContextHandle N _FAR *destContextHandle) ;

Pascal

uses netwin32

Function NWDSDuplicateContextHandle
(srcContextHandle : NWDSContextHandle;
Var destContextHandle : NWDSContextHandle
) : NWDSCCODE;

Parameters

srcContextHandle

(IN) Specifies the context handle referencing the structure to be duplicated.

destContextHandle
(OUT) Points to the newly created context handle.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

144 NDK: Novell eDirectory Core Services

Remarks

NWDSDuplicateContextHandle allocates storage for a new context structure and copies the values
of the source context structure referenced by srcContextHandle to the newly allocated context
structure. If the srcContextHandle is invalid, allocation of a new context structure is still attempted.

In this case, the default values of NWDSCreateContextHandle will be used to initialize the new
context structure.

NCP Calls

None

See Also

NWDSCreateContextHandle (page 133), NWDSDuplicateContext (obsolete 03/99) (page 142)

Functions 145

NWDSEXxtSyncList

Lists the immediate subordinates for an eDirectory object and places restrictions on the
subordinate's names, classes, modification times, and object types.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSExtSyncList (
NWDSContextHandle context,

pnstr8 objectName,
pnstr8 className,
pnstr8 subordinateName,
pnint ptr iterationHandle,
pTimeStamp T timeStamp,

nbool onlyContainers,
pBuf T subordinates) ;

Pascal

uses netwin32

Function NWDSExtSyncList
(context : NWDSContextHandle;
objectName : pnstr8;
className : pnstr8;
subordinateName : pnstr8;
iterationHandle : pnint ptr;
timeStamp : pTimeStamp T;

onlyContainers : nbool;
subordinates : pBuf T
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

146 NDK: Novell eDirectory Core Services

objectName

(IN) Points to the name of the object whose immediate subordinate objects are to be listed.

className

(IN) Points to a class name to be used as a filter (can contain wildcards).

subordinateName

(IN) Points to an object name to be used as a filter (can contain wildcards).

iterationHandle
(IN/OUT) Points to information needed to resume subsequent iterations of NWDSExtSyncList.
This should be set to NO_MORE _ITERATIONS initially.

timeStamp

(IN) Points to an object-modification time to be used as a filter (can be NULL).

onlyContainers

(IN) Specifies whether the results should include only container objects: TRUE=only container
objects; FALSE=other objects.

subordinates

(OUT) Points to a Buf T containing a list of subordinate objects matching the filters.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The name specified by className’s filter is the name of an object class, such as User, Computer, or
Server. It can be a specific name or a string containing wildcards. A wildcard can be a zero-length
string, or a string containing asterisks (*):

* ""or "*" specifies all class names.

+ "U*" specifies all class names beginning with "U".
The value given for subordinateName ’s filter can be one of the following:

¢ The left-most name of an object, such as Adam or Graphics Printer.
+ A string with asterisks (*), such as A* or Gr*.

+ A zero length string (""), which means any name is valid.

The following examples show how to use wildcards for untyped names:

c* Any object whose left-most name begins with a "c"
character.

M*y Any object beginning with "M" and ending with "y"
such as Mary.

Functions 147

If the wildcard name specified for subordinateName includes a type, such as "CN," the name must
include the equals (=) sign. The following examples show how to use wildcards for typed names:
cn=* Any object whose left-most name is a common name.
cn=c* Any object whose left-most name is a common name
and begin with "c."
ox=%* Any object whose left-most name is of an attribute
type beginning with an "o," such as O or OU.
o*=c* Any object whose left-most name is of an attribute
type beginning with an "o," and whose name begins
with "c."

The timeStamp filter restricts the result to objects having modification times greater than or equal to
the time specified in timeStamp.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero, and wholeSeconds to the
appropriate value.

The iterationHandle parameter controls retrieval of results larger than the result buffer pointed to by
subordinates.

Before the initial call to NWDSExtSyncList, set the contents of the iteration handle pointed to by
iterationHandle to NO_MORE ITERATIONS.

If the result buffer holds the complete results when NWDSExtSyncList returns from its initial call,
the location pointed to by iterationHandle is NO_MORE_ITERATIONS. If the iteration handle is
not NO_MORE _ITERATIONS, use the iteration handle for subsequent calls to NWDSExtSyncList
to obtain further portions of the results. When the results are completely retrieved, the contents of
the iteration handle will be NO_ MORE_ITERATIONS.

To end the List operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_SEARCH to free memory and states associated with the List operation.

The onlyContainers parameter specifies whether the results should be restricted to include
information for container objects only. If onlyContainers is FALSE (0), the result contains
information for objects of all object types. If any other value is given, only information for container
objects is returned.

Allocate the result buffer pointed to by subordinates by calling NWDSAIllocBuf. The result buffer
does not need to be initialized because it is a result buffer.

The contents of the result buffer pointed to by subordinates is overwritten with each subsequent call
to NWDSExtSyncList. Remove the contents from the result buffer before each subsequent call to
NWDSExtSyncList.

The results of NWDSExtSyncList are not ordered and might not be in alphabetical order.

For more information, see “Retrieving Results from eDirectory Output Buffers” on page 53.

NOTE: On large networks, iterative processes, such as NWDSExtSyncList, might take a long time
to complete. For example, listing all of the User objects on a corporate network might be too time
consuming. These processes can be interrupted or aborted using NWDSCloselteration.

Developers should use NWDSCloselteration to allow users of their applications to abort an iterative
process that is taking too long to complete.

148 NDK: Novell eDirectory Core Services

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSList (page 248), NWDSListByClassAndName (page 254),
NWDSListContainers (page 261)

Functions 149

NWDSExtSyncRead

Reads values from one or more of an eDirectory object’s attributes and places restrictions on the
attributes' modification time.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSExtSyncRead (
NWDSContextHandle context,

pnstr8 objectName,

nuint32 infoType,

nbool8 allAttrs,

pBuf T attrNames,

pnint ptr iterationHandle,

pTimeStamp T timeStamp,

pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSExtSyncRead
(context : NWDSContextHandle;
objectName : pnstr8;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;
iterationHandle : pnint ptr;
timeStamp : pTimeStamp T;
objectInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

150 NDK: Novell eDirectory Core Services

objectName

(IN) Points to the name of the object whose attributes are to be read.

infoType

(IN) Specifies the type of information desired (see Section 5.16, “Information Types for Search
and Read,” on page 476).

allAttrs

(IN) Specifies the scope of the request: TRUE=information concerning all attributes is
requested; FALSE=only attributes named in the attrNames parameter are requested.

attrNames

(IN) Points to a request buffer containing the attribute names for which information is to be
returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSExtSyncRead. This should be set initially to NO_ MORE _ITERATIONS.

timeStamp

(IN) Points to an object-modification time to be used as a filter.

objectInfo

(OUT) Points to a result buffer that receives the attribute names or names and values.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The name specified by objectName is relative to the current name context in the NDS context
specified by context.

The infoType, allAttrs, attrNames, and timeStamp parameters indicate what attribute information is
requested.

The infoType specifies whether both attribute names and attribute values are requested

If allAttrs is TRUE, information about all attributes associated with the object is requested and
attrNames is ignored (in which case, assign a NULL pointer to attrNames). If allAttrs is FALSE,
only the attributes specified by the result buffer pointed to by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is returned, and infoType is
not meaningful. In this case, the return value of NWDSExtSyncRead can determine whether the
specified object exists (verifying the objects distinguished name), or whether access to the object is
allowed.

Functions 151

The request buffer pointed to by attrNames explicitly specifies the attributes to be returned. Initialize
the buffer with a value of DSV_READ. For more information on setting up this buffer, see “Reading
Attributes of eDirectory Objects” on page 62.

The timestamp pointed to by timeStamp is used to exclude attributes that have not been modified
since a certain time. The timestamp filter limits the attribute list to be those attributes having
modification times greater than or equal to the specified time.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero, and wholeSeconds to the
appropriate value.

On return, the result buffer pointed to by objectInfo contains the requested information. This result
buffer is allocated by calling NWDSAIllocBuf. It is not initialized since it is a result buffer.

This result buffer either contains a list of attribute names or a sequence of attribute-name and
attribute-value sets. The type of information returned depends on infoType. For more information,
see “Retrieving Results from eDirectory Output Buffers” on page 53.

If the infoType parameter is set to return both attribute names and values, you cannot remove only
names from the result buffer. You must remove the information in the correct order of attribute name
first, then all of the values associated with the attribute. Then you remove the next attribute name
and its values. Otherwise, NWDSGetAttrName will return erroneous information.

The iterationHandle parameter controls retrieval of search results larger than the result buffer
pointed to by objectInfo.

Before the initial call to NWDSExtSyncRead, set the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSExtSyncRead returns from its initial call,
the location pointed to by iterationHandle is set to NO_MORE ITERATIONS. If the iteration
handle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent calls to
NWDSExtSyncRead to obtain further portions of the results. When the results are completely
retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

To end the Read operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_READ to free memory and states associated with the
Read operation.

The level of granularity for partial results is an individual value of an attribute. If an attribute is
multivalued and its values are split across two or more NWDSExtSyncRead results, the attribute
name is repeated in each result.

The results of NWDSExtSyncRead are not ordered and might not be in alphabetical order.

NWDSExtSyncRead can be useful for detecting changes in an object’s attributes. However,
NWDSExtSyncRead does not return information about attributes that have been deleted or for
which your attribute privileges have changed.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 01 Ping for eDirectory NCP

152 NDK: Novell eDirectory Core Services

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRead (page 327), NWDSReadObjectInfo (page 340)

Functions 153

NWDSExtSyncSearch

Searches a region of the eDirectory tree for objects satisfying a set of specified requirements,
including modification time.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSExtSyncSearch (
NWDSContextHandle context,

pnstr8 baseObjectName,
nint scope,
nbool8 searchAliases,
pBuf T filter
pTimeStamp T timeStamp,
nuint32 infoType,
nbool8 allAttrs,
pBuf T attrNames,
pnint ptr iterationHandle,
nint32 countObjectsToSearch,
pnint32 countObjectsSearched,
pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSExtSyncSearch
(context : NWDSContextHandle;
baseObjectName : pnstr8;
scope : nint;
searchAliases : nbool8;
filter : pBuf T;
timeStamp : pTimeStamp T;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;

154 NDK: Novell eDirectory Core Services

iterationHandle : pnint ptr;
countObjectsToSearch : nint32;
countObjectsSearched : pnint32;
objectInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

baseObjectName

(IN) Points to the name of a subtree root to be searched.

scope

(IN) Specifies the depth of the search (see Section 5.22, “Scope Flags,” on page 483).

searchAliases

(IN) Specifies whether to dereference subordinate aliases in the search subtree.

filter
(IN) Points to a Buf T containing a search filter. This parameter must be specified (cannot be
NULL).

timeStamp
(IN) Points to an object-modification time to further restrict the filter provided by filter. This
parameter must be specified (cannot be NULL).

infoType
(IN) Specifies the type of information to be returned (see Section 5.16, “Information Types for
Search and Read,” on page 476).

allAttrs
(IN) Specifies the scope of the request: TRUE=information concerning all attributes is
requested; FALSE=only attributes named in attrNames are requested.

attrNames

(IN) Points to a Buf T containing the attribute names for which information is to be returned.

iterationHandle
(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSExtSyncSearch. This should be set initially to NO_ MORE _ITERATIONS.
countObjectsToSearch
(IN) Specifies the number of objects for the server to search before the server returns to the
client.
countObjectsSearched
(OUT) Points to the number of objects searched by the server.

Functions

155

objectInfo

(OUT) Points to a Buf T containing the names of the objects along with any requested attribute
values satisfying the search.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSExtSyncSearch succeeds if the base object specified by baseObjectName is located,
regardless of whether there are any subordinates to return.

The baseObjectName parameter identifies the object (or possibly the root) from which the search is
relative. If the string is a zero-length string ("), the current name context specified in context is
selected as the base object.

Aliases of the base object are dereferenced while locating the base object unless the context flag
associated with DCV_DEREF ALIASES is not set.

The searchAliases parameter determines whether the aliases among the subordinates of the base
object are dereferenced during the search. If TRUE, the search continues in the subtree of the aliases
object. If FALSE, the search returns information about the alias object.

The filter parameter eliminates objects not of interest to the application. Information is returned only
on objects that satisfy the filter. This filter is created by calling NWDSAllocFilter,
NWDSAddFilterToken, and NWDSPutFilter. For information about creating a filter, see

Section 1.4, “Search Requests,” on page 30. For step-by-step instructions, see “Searching
eDirectory” on page 63.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero, and wholeSeconds to the
appropriate value.

The infoType, allAttrs, and attrNames parameters indicate what attribute information is requested.

If allAttrs is TRUE, information about all attributes associated with the object is requested and
attrNames is ignored (in which case, attrNames can be NULL). If allAttrs is FALSE, only the
attributes specified by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is returned, and infoType is
not meaningful. In this case, the return value of NWDSExtSyncSearch simply determines whether
the object specified by baseObjectName exists, or whether access to the object is allowed.

The request buffer pointed to by attrNames is used to explicitly specify the names of the attributes to
be returned. Initialize this buffer with a value of DSV_SEARCH. For more information, see
“Preparing eDirectory Input Buffers” on page 52.

On return, the buffer pointed to by objectInfo contains the information for objects matching the
search criteria, along with the requested attribute information. This buffer is allocated by calling
NWDSAllocBuf, but it is not initialize. For more information on reading the results, see “Retrieving
Results from eDirectory Output Buffers” on page 53.

156 NDK: Novell eDirectory Core Services

You must retrieve all information from the buffer even if you do not plan to use it.

The iterationHandle parameter controls retrieval of search results larger than the result buffer
pointed to by objectInfo.

Before the initial call to NWDSExtSyncSearch, set the iterationHandle parameter to
NO_MORE _ITERATIONS.

If the result buffer holds the complete results when NWDSExtSyncSearch returns from its initial
call, the location pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the iteration
handle is not set to NO_MORE ITERATIONS, use the iteration handle for subsequent calls to
NWDSExtSyncSearch to obtain further portions of the results. When the results are completely
retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

NOTE: On large networks, iterative processes, such as NWDSExtSyncSearch, might take a long
time to complete. For example, listing all of the User objects on a corporate network might be too
time consuming. Developers should use NWDSCloselteration to allow users of their applications to
abort an iterative process that is taking too long to complete.

To end the Search operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_SEARCH to free memory and states associated with the
Search operation.

The level of granularity for partial results is an individual attribute value. If the attribute is
multivalued and its values are split across two or more calls to NWDSExtSyncSearch, the current
object name, object info, and attribute name are repeated in the subsequent result buffer.

NOTE: Currently, because of aliasing, searching a subtree can result 1) in duplicate entries or 2) in
an infinite loop.

NWDSExtSyncSearch can be useful for detecting changes in objects matching a search direction.
However, NWDSExtSyncSearch does not return information about objects that have been deleted or
for which your privileges have changed.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddFilterToken (page 84), NWDSAIllocFilter (page 97), NWDSCloselteration (page 126),
NWDSFreeFilter (page 162), NWDSPutFilter (page 323), NWDSSearch (page 383)

Functions

157

NWDSFreeBuf

Frees a buffer allocated by the NWDSAIllocBuf function.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSFreeBuf (
pBuf T buf);

Pascal
uses netwin32
Function NWDSFreeBuf

(buf : pBuf T
) : NWDSCCODE;

Parameters

buf
(IN) Points to the buffer to be freed.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

OxFFFF ERR_NULL_POINTER

FEB5

nonzero Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
value

Remarks

All buffers allocated by calling NWDSAllocBuf should be freed once they are no longer needed by
the client. Doing so frees up memory for the client.

158 NDK: Novell eDirectory Core Services

If the buf parameter is passed NULL, NWDSFreeBuf will return ERR_NULL POINTER.

NCP Calls

None

See Also

NWDSAIllocBuf (page 95), NWDSInitBuf (page 242)

Functions 159

NWDSFreeContext

Frees a previously allocated NDS context.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSFreeContext (
NWDSContextHandle context) ;

Pascal
uses netwin32
Function NWDSFreeContext

(context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context to be freed.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

All NDS contexts created by NWDSCreateContextHandle should be freed when the client is no
longer using them. Doing so frees memory for the client.

NCP Calls

None

160 NDK: Novell eDirectory Core Services

See Also

NWDSCreateContextHandle (page 133), NWDSGetContext (page 191), NWDSSetContext
(page 387)

Functions 161

NWDSFreeFilter

Frees the area allocated to a search filter expression tree.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsfilt.h>

N EXTERN LIBRARY (void) NWDSFreeFilter (

pFilter Cursor T cur,
void (N_FAR N _CDECL *freeVal) (
nuint32 syntax,
nptr val));
Pascal

uses netwin32

Function NWDSFreeFilter
(cur : pFilter Cursor T;
freeVal : FreeValProc

)i

Parameters

cur

(IN) Points to the filter to be freed, a filter previously allocated with NWDSAllocFilter.

freeVal
(IN) Specifies the function to be used to free nodes in the filter expression tree; can be NULL.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

162 NDK: Novell eDirectory Core Services

Remarks

Normally, the expression tree is freed by NWDSPutFilter when the tree is stored in the request
buffer. If the tree is not used, it should be freed by calling NWDSFreeFilter.

The function specified by freeVal must accept two parameters.

Do not call NWDSFreeFilter after calling NWDSPutFilter, even if NWDSPutFilter returns an error.

NCP Calls

None

See Also

NWDSAddFilterToken (page 84), NWDSAllocFilter (page 97), NWDSDelFilterToken (page 140),
NWDSPutFilter (page 323)

Functions 163

NWDSGenerateKeyPairEx

Creates or changes a public/private key pair for a specified object. Supports international and
extended characters in passwords.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGenerateKeyPairEx (
NWDSContextHandle context,

pnstr8 objectName,

nuint32 pwdFormat,

nptr pwd,

nuint32 pwdOption) ;
Pascal

uses netwin32

Function NWDSGenerateKeyPairEx
(context : NWDSContextHandle;
objectName : pnstr8;
pwdFormat : nuint32;
pwd : nptr;
pwdOption : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName
(IN) Points to the name of the object to update.

164 NDK: Novell eDirectory Core Services

pwdFormat

(IN) Specifies the format of the password data. Select from the following:
PWD UNICODE STRING
PWD_UTF8 STRING
PWD _RAW C STRING
pwd
(IN) Points to the object password in the format specified by pwdFormat.
pwdOption

(IN) Specifies which password to operate on. Select from the following:

Value Constant Description

0 ALL_PASSWORDS All passwords are changed.

1 NDS_PASSWORD Only the eDirectory password is changed.

2 NT_PASSWORD Only the NT password is changed (the NT password that

NDS4NT in eDirectory).
4 AD_PASSWORD Only the AD/NT password (serviced by password sync).

Return Values

0x0000 0000 SUCCESSFUL
nonzero value Nonzero values indicate errors. See “NDS Return Values”.
Remarks

If no password is desired, objectPassword should point to a zero-length string ("").

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

An object must have rights to modify an object's password attributes before the
NWDSGenerateObjectKeyPair function will succeed.

The NT _PASSWORD option only works if the eDirectory for NT product has been installed. If this
option is set and the eDirectory for NT product has not been installed, an error is returned.

If the ALL_PASSWORDS option is set, the NDS PASSWORD operation is performed first. If
successful, other password operations are attempted, but error conditions are not returned for the
other operations.

NOTE: The PWD_RAW_C_STRING password format allows any arbitrary NULL-terminiated
data to be used as a password. Passwords specified with this format are not interoperable with
unicode and UTF8 passwords.

Functions 165

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSChangePwdEx (page 119)

166 NDK: Novell eDirectory Core Services

NWDSGenerateObjectKeyPair

Creates or changes a public/private key pair for a specified object. Does not support international or

extended characters in passwords.
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGenerateObjectKeyPair
NWDSContextHandle contextHandle,

pnstr8 objectName,

pnstr8 objectPassword,

nflag32 pwdOption) ;
Pascal

uses netwin32

Function NWDSGenerateObjectKeyPair
(contextHandle : NWDSContextHandle;
objectName : pnstr8;
objectPassword : pnstr8;
pwdOption : nflag32

) : NWDSCCODE;

Parameters

contextHandle

(IN) Specifies the NDS context for the request.

objectName
(IN) Points to the name of the object to update.

objectPassword

(IN) Points to the object password in ASCII text format.

Functions 167

pwdOption
(IN) Specifies the password to operate on. Select from the following:

Value Constant Description

0 ALL_PASSWORDS All passwords are changed.

1 NDS_PASSWORD Only the eDirectory password is changed.

2 NT_PASSWORD Only the NT password is changed (the NT password that

NDS4NT in eDirectory).
4 AD_PASSWORD Only the AD/NT password (serviced by password sync).

Return Values

0x0000 0000 SUCCESSFUL
nonzero value Nonzero values indicate errors. See “NDS Return Values”.
Remarks

If no password is desired, objectPassword should point to a zero-length string ("").

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

An object must have rights to modify an object's password attributes before the
NWDSGenerateObjectKeyPair function will succeed.

The NT _PASSWORD option only works if the eDirectory for NT product has been installed. If this
flag is passed in as the value for the pwdOption parameter and the eDirectory for NT product has not
been installed, an error is returned.

If the ALL_PASSWORDS option is set, the NDS PASSWORD operation is performed first. If
successful, other password operations are attempted, but error conditions are not returned for the
other operations.

IMPORTANT: NWDSGenerateKeyPairEx (page 164) supports international and extended
characters in passwords and is recommended in place of NWDSGenerateObjectKeyPair.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSChangeObjectPassword (page 116)

168 NDK: Novell eDirectory Core Services

NWDSGetAttrCount

Returns the number of attributes whose information is stored in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetAttrCount (
NWDSContextHandle context,

pBuf T buf,
pnuint32 attrCount) ;
Pascal

uses netwin32

Function NWDSGetAttrCount
(context : NWDSContextHandle;
buf : pBuf T;
attrCount : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

attrCount

(OUT) Points to the number of attributes in the result buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 169

Remarks

NWDSGetAttrCount should be the first "Get" operation performed following a Read operation
(such as NWDSRead, NWDSReadAttrDef, or NWDSSearch).

After the attribute count has been determined, the attribute names can be retrieved from the buffer
by calling NWDSGetAttrName or NWDSGetAttrDef. Attribute values are retrieved using a
combination of calls to NWDSComputeAttrValSize and NWDSGetAttrVal.

The buf parameter points to a Buf T filled in by a previous call to a eDirectory function, such as
NWDSRead.

For complete steps on reading the information from the buffer, see “Reading Attributes of
eDirectory Objects” on page 62.

NCP Calls

None

See Also

NWDSGetAttrDef (page 171), NWDSGetAttrName (page 173), NWDSRead (page 327),
NWDSReadAttrDef (page 330)

170 NDK: Novell eDirectory Core Services

NWDSGetAttrDef

Returns the next eDirectory Schema attribute definition from a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetAttrDef (
NWDSContextHandle context,

pBuf T buf,

pnstr8 attrName,

pPAttr Info T attrInfo);
Pascal

uses netwin32

Function NWDSGetAttrDef
(context : NWDSContextHandle;
buf : pBuf T;
attrName : pnstr8;
attrInfo : pAttr Info T

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

attrName

(OUT) Points to the name of the attribute definition at the current position in the result buffer.

attrInfo
(OUT) Points to additional information about the attribute definition.

Functions 171

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetAttrDef is used to retrieve attribute information from a result buffer filled in by
NWDSReadAttrDef. For more information, see “Reading an Attribute Definition” on page 72.

You must allocate space for the attribute name pointed to by attrName. The size of the allocated
memory is (MAX SCHEMA NAME CHARS)+1)*sizeof(character size) where character size is
for single-byte characters, and 2 for Unicode characters (Unicode characters are always 16 bits).
One character is used for NULL termination.

If NWDSReadAttrDef is called with infoType set to DS ATTR_DEF NAMES (instead of
DS ATTR DEFS), its output buffer will contain only names of the attributes. In this case,
NWDSGetAttrDef ignores attrInfo, so attrInfo can be NULL.

You must allocate memory (sizeof(Attr_Info T)) to receive the additional attribute-definition
information.

NCP Calls

None

See Also

NWDSGetAttrCount (page 169), NWDSReadAttrDef (page 330)

172 NDK: Novell eDirectory Core Services

NWDSGetAttrName

Retrieves the name of the attribute whose information is stored at the current position in a result

buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetAttrName
NWDSContextHandle context,

pBuf T buf,

pnstr8 attrName,

pnuint32 attrvalCount,

pnuint32 syntaxID) ;
Pascal

uses netwin32

Function NWDSGetAttrName
(context : NWDSContextHandle;
buf : pBuf T;
attrName : pnstr8;
attrvValCount : pnuint32;
syntaxID : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

attrName

(OUT) Points to the attribute name whose information is stored at the current position in the

result buffer.

Functions 173

attrvalCount

(OUT) Points to the number of attribute values following the attribute name in the result buffer.
(Multivalued attributes can have more than one value.)

syntaxID
(OUT) Points to the syntax ID identifying the syntax type of the attribute returned in attrName.

Return Values

0x0000 0000 SUCCESSFUL
OxFFFF FEB5 ERR_NULL_POINTER

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWDSGetAttrName is used to retrieve attribute information from a result buffer filled in by
NWDSRead, NWDSSearch, or NWDSList.

You must allocate space for the attribute name. The size of the allocated memory is
(IMAX_SCHEMA NAME CHARS)+1)*sizeof(character size) where character size is 1 for single-
byte characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character
is used for NULL termination.

The location pointed to by attrValCount is set to specify the number of attribute values associated
with the current attribute in the result buffer. If no values are associated with the current attribute,
the number will be zero. If the current attribute is a single-valued attribute, the number will be one.
If the current attribute is a multi-valued attribute, the number can be zero or more.

The location pointed to by syntaxID receives a value identifying the syntax type of the attribute
returned in attrName. This ID is passed as a parameter to subsequent calls to
NWDSComputeAttrValSize and NWDSGetAttrVal. The syntax types (such as SYN CI_STRING)
are enumerated in NWDSDEFS.H.

If the function filling in the result buffer was called specifying that the results contain only names,
NWDSGetAttrName still needs valid pointers for the attrValCount and syntaxID parameters, or the
function returns ERR_NULL POINTER.

For more information, see “Reading Attributes of eDirectory Objects’” on page 62.

NCP Calls

None

See Also

NWDSGetAttrCount (page 169), NWDSRead (page 327), NWDSSearch (page 383),
NWDSReadAttrDef (page 330)

174 NDK: Novell eDirectory Core Services

NWDSGetAttrval

Returns the next attribute value in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetAttrVal

(NWDSContextHandle context,

pBuf T buf,

nuint32 syntaxID,

nptr attrval) ;
Pascal

uses netwin32

Function NWDSGetAttrVal
(context : NWDSContextHandle;
buf : pBuf T;
syntaxID : nuint32;
attrvVal : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

syntaxID

(IN) Specifies the syntax of the attribute value.

attrval

(OUT) Points to the attribute value at the current buffer position.

Functions 175

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetAttrVal is used to retrieve attribute values from a result buffer filled in by functions such
as NWDSList, NWDSRead, or NWDSSearch.

The syntaxID parameter is returned by a previous call to NWDSGetAttrName. The syntaxID
parameter indicates to NWDSGetAttrVal how to translate the attribute value into a data structure.
The structure of the data returned in attrVal depends on the value of syntaxID.

The syntax types (such as SYN_CI_STRING) are enumerated in NWDSDEFS.H. Attribute
syntaxes and their corresponding data structures are listed in “Attribute Syntax Definitions” (NDK:
Novell eDirectory Schema Reference).

If the attrVal parameter equals NULL, the value is skipped; this is useful for simply counting
attribute values.

You must allocate memory for the attribute value and set attrVal to point to that memory. The
memory must be a contiguous block of memory whose size is determined by calling
NWDSComputeAttrValSize.

The memory pointed to by attrVal should be dynamically allocated memory since the size of the
memory needed to store the attribute values can be different even when the values are associated
with the same attribute.

For complete steps on reading the information from the buffer, see “Reading Attributes of
eDirectory Objects” on page 62

NCP Calls

None

176 NDK: Novell eDirectory Core Services

NWDSGetAttrValFlags

Returns the attribute value flags for the next attribute value in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N APT NWDSGetAttrvValFlags
(NWDSContextHandle context,

pBuf T buf,
pnuint32 valueFlags) ;
Pascal

uses netwin32

Function NWDSGetAttrValFlags
(context : NWDSContextHandle;
buf : pBuf T;
valueFlags : pnuint32;

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer returned by NWDSRead when infoType is set to
DS _VALUE_INFO.

valueFlags

(OUT) Points to the attribute value flags (see Section 5.2, “Attribute Value Flags,” on

page 463).

Return Values

0x0000 0000 SUCCESSFUL

Functions 177

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetAttrValFlags is used to retrieve attribute value flags from a result buffer filled in by
functions such as NWDSList, NWDSRead, or NWDSSearch.

When NWDSRead is called with infoType equal to DS VALUE_INFO, attribute names, values,
value flags, and modification timestamps are returned in a result buffer. To retrieve information from
the result buffer, the following sequence of calls should be made:

NWDSGetAttrValFlags
NWDSGetAttrValModTime
NWDSGetAttrVal

NCP Calls

None

178 NDK: Novell eDirectory Core Services

NWDSGetAttrValModTime

Returns the modification timestamp for the next attribute value in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N APT NWDSGetAttrValModTime
(NWDSContextHandle context,

pBuf T buf,
pTimeStamp T timeStamp) ;
Pascal

uses netwin32

Function NWDSGetAttrValModTime
(context : NWDSContextHandle;
buf : pBuf T;
timeStamp : pTimeStamp T;

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer returned from NWDSRead when infoType is set to
DS _VALUE_INFO.

timeStamp

(OUT) Points to the modification timestamp of the attribute value.

Return Values

0x0000 0000 SUCCESSFUL

Functions 179

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetAttrValModTime is used to retrieve the modification timestamp of attribute values from a
result buffer filled in by functions such as NWDSList, NWDSRead, or NWDSSearch.

When NWDSRead is called with infoType equal to DS VALUE _INFO, attribute names, values,
value flags, and modification timestamps are returned in a result buffer. To retrieve information from
the result buffer, the following sequence of calls should be made:

NWDSGetAttrValFlags
NWDSGetAttrValModTime
NWDSGetAttrVal

NCP Calls

None

180 NDK: Novell eDirectory Core Services

NWDSGetBinderyContext

Returns the setting of the bindery context set on the server identified by connHandle.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetBinderyContext
NWDSContextHandle context,

NWCONN_HANDLE connHandle,
pnuint8 BinderyEmulationContext) ;
Pascal

uses netwin32

Function NWDSGetBinderyContext
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
BinderyEmulationContext : pnuint$8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the NetWare server connection handle.

binderyEmulationContext

(OUT) Points to a bindery context string.

Return Values

These are common return values.

(

Functions 181

0x0000 0000 SUCCESSFUL

Ox89FE BAD_PACKET
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

The connHandle parameter is the connection handle to the server in which you are interested.

The binderyEmulationContext parameter must have sufficient space allocated to receive the value.
For partial dot names, the DCV_CANONICALIZE NAMES flag determines whether an RDN or a
DN is returned for the bindery context. See Section 1.1, “Context Handles,” on page 15 for more
information.

The bindery context specifies a location in eDirectory where a bindery connection is allowed to see
objects in eDirectory. A bindery connection can see objects only in the eDirectory container defined
by the server’s bindery context.

Bindery context is set on NetWare 4.x and 5.x servers by using the SET BINDERY CONTEXT
command at the server console.

NCP Calls

0x2222 104 04 Return Bindery Context

See Also

NWDSAuditGetObjectID (obsolete 06/03) (page 99)

182 NDK: Novell eDirectory Core Services

NWDSGetClassDef

Retrieves an object-class definition from a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetClassDef (
NWDSContextHandle context,

pBuf T buf,

pnstr8 className,

pClass Info T classInfo);
Pascal

uses netwin32

Function NWDSGetClassDef
(context : NWDSContextHandle;
buf : pBuf T;
className : pnstr8;
classInfo : pClass Info T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

className

(OUT) Points to the name of the object-class definition at the current position in the buffer.

classInfo

(OUT) Points to the initial portion of the object-class definition.

Functions 183

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetClassDef is used to retrieve class definitions from a result buffer filled in by
NWDSReadClassDef.

The className parameter points to the name of the current class in the buffer. You must allocate
space for the class name. The size of the allocated memory is

(IMAX _SCHEMA NAME CHARS)+1)*sizeof(characters size) where character size is 1 for
single-byte characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One
character is used for NULL termination.

If NWDSReadClassDef is called with infoType set to DS CLASS DEF NAMES, classInfo of
NWDSGetClassDef is ignored and can be NULL.

For the complete steps on retrieving class information, see “Reading a Class Definition” on page 70.

NCP Calls

None

See Also

NWDSGetClassDefCount (page 185), NWDSGetClassltem (page 187), NWDSGetClassItemCount
(page 189), NWDSReadClassDef (page 333)

184 NDK: Novell eDirectory Core Services

NWDSGetClassDefCount

Returns the number of object-class definitions stored in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetClassDefCount
NWDSContextHandle context,

pBuf T buf,
pnuint32 classDefCount) ;
Pascal

uses netwin32

Function NWDSGetClassDefCount
(context : NWDSContextHandle;
buf : pBuf T;
classDefCount : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

classDefCount

(OUT) Points to the number of object-class definitions stored in the buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 185

Remarks

NWDSGetClassDefCount is used to determine the number of object-class definitions stored in a
result buffer filled by NWDSReadClassDef.

NWDSGetClassDefCount must be the first function called when reading a result buffer containing a
group of object-class definitions.

For the complete steps on retrieving class information from a result buffer, see “Reading a Class
Definition” on page 70.

NCP Calls

None

See Also

NWDSGetClassDef (page 183)

186 NDK: Novell eDirectory Core Services

NWDSGetClassltem

Returns the name of the next object class item stored in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSGetClassItem (
(NWDSContextHandle context,

pBuf T buf,
pnstr8 itemName) ;
Pascal

uses netwin32

Function NWDSGetClassItem
(context : NWDSContextHandle;
buf : pBuf T;
itemName : pnstr8

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

itemName

(OUT) Points to the name of the item (attribute or class) at the current position in the result
buffer.

Return Values

0x0000 0000 SUCCESSFUL

Functions 187

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The buf parameter points to a Buf T filled in by NWDSReadClassDef.

The itemName parameter points to the name of either an attribute or a class. The item is a member
of one of the five class-definition-item lists:

. Super Class Names

. Containment Class Names

1

2

3. Naming Attribute Names

4. Mandatory Attribute Names
5

. Optional Attribute Names
The first two lists contain the names of classes. The remaining lists contain the names of attributes.

The user must allocate space for the class item name pointed to by itemName. The size of the
allocated memory is (MAX_SCHEMA NAME CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

Before retrieving the class items from a class-definition-item list, determine the number of items in
the list by calling NWDSGetClassIltemCount. Then retrieve the items associated with the list by
repeatedly calling NWDSGetClassItem once for each item in the list. Then determine the number of
items in the next list by calling NWDSGetClassIltemCount, and retrieve the values for the list by
calling NWDSGetClassItem, and so on until you have retrieved all of the information from all of the
lists.

NOTE: You must retrieve the information from the class-definition-item lists in the order shown
above.

For the complete steps on reading class-definition information, see “Reading a Class Definition” on
page 70.

NCP Calls

None

See Also

NWDSGetClassDef (page 183), NWDSGetClassItemCount (page 189),
NWDSListContainableClasses (page 258), NWDSReadClassDef (page 333)

188 NDK: Novell eDirectory Core Services

NWDSGetClassltemCount

Returns the number of object class definition items associated with a result buffer’s current object
class definition list in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetClassItemCount (
NWDSContextHandle context,

pBuf T buf,
pnuint32 itemCount) ;
Pascal

uses netwin32

Function NWDSGetClassItemCount
(context : NWDSContextHandle;
buf : pBuf T;
itemCount : pnuint32

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

itemCount

(OUT) Points to the number of object-class definition items associated with the result buffer’s
current class-definition-item list.

Return Values

0x0000 0000 SUCCESSFUL

Functions 189

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

buf points to Buf T filled in by NWDSReadClassDef.

itemCount points to the number of object-class-definition items that are associated with the current
class-definition-item list. There are five class-definition item lists; these lists are stored in the buffer
in the following order:

. Super Class Names

. Containment Class Names

1

2

3. Naming Attribute Names

4. Mandatory Attribute Names
5

. Optional Attribute Names
The first two lists contain the names of classes. The remaining lists contain the names of attributes.

Before retrieving class items from a class-definition-item list, determine the number of items in the
list by calling NWDSGetClassltemCount. Retrieve the items associated with the list by calling
NWDSGetClassItem once for each item in the list. Then determine the number of items in the next
list by calling NWDSGetClassltemCount, and retrieve the values for the list by calling
NWDSGetClassltem, until you have retrieved all of the information from all lists.

For the complete steps for reading object-class-definition information, see “Reading a Class
Definition” on page 70.

NCP Calls

None

See Also

NWDSGetClassDef (page 183), NWDSGetClassltem (page 187), NWDSListContainableClasses
(page 258), NWDSReadClassDef (page 333)

190 NDK: Novell eDirectory Core Services

NWDSGetContext

Returns information about an NDS context handle.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetContext (
NWDSContextHandle context,

nint key,
nptr value) ;
Pascal

uses netwin32

Function NWDSGetContext
(context : NWDSContextHandle;
key : nint;
value : nptr

) : NWDSCCODE;

Parameters

context
(IN) Specifies the context handle to be queried.
key

(IN) Specifies the information to be retrieved (see Section 5.6, “Context Keys and Flags,” on
page 467).

value

(OUT) Points to the context handle information.

Return Values

0x0000 0000 SUCCESSFUL

Functions 191

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Applications cannot directly access context handle information. Applications must use the
NWDSGetContext function to retrieve context information.

The key parameter specifies the type of information to retrieve, and the value parameter points to the
information retrieved. The value parameter must point to a variable that matches the data type
specified by the key parameter. For data types and defined keys, see Section 5.6, “Context Keys and
Flags,” on page 467.

The NWDSGetContext function must be called repetitively to retrieve information contained in
multiple keys.

NCP Calls

None

See Also

NWDSCreateContextHandle (page 133), NWDSSetContext (page 387)

192 NDK: Novell eDirectory Core Services

NWDSGetCountByClassAndName

Counts the immediate subordinates of an eDirectory object, restricting the count to objects of a
specified object class, with a specific name, or both.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetCountByClassAndName (
NWDSContextHandle context,

pnstr8 objectName,
pnstr8 className,
pnstr8 subordinateName,
pnint32 count) ;

Pascal

uses netwin32

Function NWDSGetCountByClassAndName
(context : NWDSContextHandle;
objectName : pnstr8;
className : pnstr8;
subordinateName : pnstr8;
count : pnint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name whose subordinates are to be counted.

Functions 193

className

(IN) Points to the base class to be used as a filter when determining which objects should be
counted.

subordinateName

(IN) Points to a name to be used as a filter when determining which objects should be counted.

count

(OUT) Points to the count of subordinate objects matching the filters.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
Ox89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

NWDSGetCountByClassAndName is similar to NWDSListByClassAndName except no
information, other than a count of objects, is returned by NWDSGetCountByClassAndName.

The location of the subordinate object(s) in the eDirectory tree is immediately subordinate to the
object specified by objectName. It is not relative to the current name context in the NDS context
specified by context.

The relationship between className and subordinateName is an "AND" relationship.
¢ When className and subordinateName are provided, the count of immediate subordinate
objects is restricted by both filters.

* When className is NULL and subordinateName is NULL, the count of all immediate
subordinates is returned.

¢ When className is provided and subordinateName is NULL, the count of immediate
subordinates is restricted only by the className filter.

¢ When subordinateName is provided and className is NULL, the count of immediate
subordinates is restricted only by the subordinateName filter.

194 NDK: Novell eDirectory Core Services

The following examples show how to use wildcards for untyped names:

c* Any object whose left-most name begins with a "c"
character. M*y Any object beginning with "M" and ending with

such as Mary.

If the wildcard name specified for subordinateName includes a type, such as "CN," the name must
include the equals (=) sign. The following examples show how to use wildcards for typed names:

cn=* Any object whose left-most name is a common name.

cn=c* Any object whose left-most name is a common name
and begin with "c."

ox=x* Any object whose naming attribute is of a type
beginning with an "o," such as O or OU.

o*=c* Any object whose left-most name is of a type
beginning with an "o," and whose name begins
with "c."

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSListByClassAndName (page 254)

Functions 195

NWDSGetCurrentUser

Returns the handle of an eDirectory user.
Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: NDS

Syntax

#include <nwconn.h>
#include <nwdsapi.h>

int NWDSGetCurrentUser (
void) ;

Return Values

Returns the user handle of the current user.

Remarks

This function returns the current eDirectory user in the Thread Group Control Structure (TGCS).
The function is valid only on the NLM platform. The current user determines which authentication
information is used. For more information, see “Establishing Identities to Multiple eDirectory
Trees—NLM Platform” on page 55.

See Also

NWDSSetCurrentUser (page 389)

196 NDK: Novell eDirectory Core Services

NWDSGetDefNameContext

Retrieves the default name context for a specified tree.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetDefNameContext (
NWDSContextHandle context,

nuint nameContextLen,
pnstr8 nameContext) ;
Pascal

uses netwin32

Function NWDSGetDefNameContext
(context : NWDSContextHandle;
nameContextLen : nuint;
nameContext : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

nameContextLen

(IN) Specifies the length (in bytes) of the nameContext buffer.

nameContext

(OUT) Points to the buffer in which to place the default name context value.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 197

Remarks

This function gets the default name context for the tree specified in the context (or if the tree name
isn’t set, the preferred tree name). This call differs from NWGetDefaultNameContext in that this call
has an added parameter, context, and operates on a per tree basis. Also, this function can return the
name context in Unicode while NWGetDefaultNameContext could only return the data in local code
page format.

The DCV_XLATE STRINGS flag determines whether local code page format or Unicode strings
are returned. For more information, see “DCK_FLAGS Key” on page 18.

The default name context for the preferred tree can be set by the DEFAULT NAME CONTEXT
configuration parameter, or by calling either NWSetDefaultNameContext or
NWDSSetDefNameContext. The default name context for another tree (different from the preferred
tree) can be set by calling NWDSSetDefNameContext.

The default name context can be from 0 to 257 bytes long for local code page strings (including the
NULL), or 0 to 514 bytes long for Unicode strings (including the 2 bytes for NULL). If the
nameContext buffer is too small to contain the value, an error is returned and no data is copied.

If the tree name is not set in the context, the preferred tree will be used. For requesters that do not
support multiple trees, if the tree name is specified (a NULL string is not returned to the eDirectory
libraries) and if the tree name is different from the preferred tree, an error will be returned.

NCP Calls

None

See Also

NWGetDefaultNameContext (page 410), NWSetDefaultNameContext (page 427),
NWDSSetDefNameContext (page 390)

198 NDK: Novell eDirectory Core Services

NWDSGetDSlInfo

Returns DSI object information not stored in the attributes of an object.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetDSIInfo
NWDSContextHandle context,

nptr buf,

nuint32 bufLen,

nuint32 infoFlag,

nptr data) ;
Pascal

uses netwin32

Function NWDSGetDSIInfo (
context : NWDSContextHandle;
buf : nptr;
buflLen : nuint32;
infoFlag : nuint32;
data : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.
buf

(IN) Points to the buffer returned from previously calling the NWDSRead,
NWDSReadObjectDSIInfo, NWDSList or NWDSSearch functions.

(

Functions 199

bufLen
(IN) Specifies the length of the buf parameter.

infoFlag

(IN) Specifies the data element to be extracted from the buffer pointed to in the buf parameter
(see Section 5.11, “DCK_DSI FLAGS Values,” on page 472).

data

(OUT) Points to a buffer to receive the data element value.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

The NWDSReadObjectDSIInfo function returns data regarding an eDirectory object. The
NWDSGetDSIInfo function extracts the individual data elements from the reply buffer. The
returned "data" is formatted according to the data type of the element referred to by the Section 5.11,
“DCK_DSI FLAGS Values,” on page 472. The buffer pointed to by the data parameter must be
large enough for the data type of the element.

The DSI information can be retrieved in any order and does not have to follow the order of the
DSI OUTPUT FIELDS flag.

Object information can be useful to applications browsing the eDirectory tree.

NCP Calls

None

See Also

NWDSGetObjectNameAndInfo (page 217), NWDSReadObjectDSIInfo (page 338)

200 NDK: Novell eDirectory Core Services

NWDSGetDSVerinfo

Returns NDS/eDirectory version information.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

C

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetDSVerInfo (
NWCONN_HANDLE conn,

pnuint32 dsVersion,
pnuint32 rootMostEntryDepth,
pnstr8 sapName,
pnuint32 flags,
punicode treeName) ;
Pascal

uses netwin32

Function NWDSGetDSVerInfo
(conn : NWCONN_ HANDLE;
Var dsVersion : nuint32;
Var rootMostEntryDepth : nuint32;
sapName : pnstr8;
Var flags : nuint32;
treeName : punicode
) : NWDSCCODE;

Parameters
conn
(IN) Specifies the connection handle to an eDirectory server.

dsVersion
(OUT) Points to the DS.NLM build version.

rootMostEntryDepth
(OUT) Points to the number of levels to the root-most object.

Functions 201

sapName

(OUT) Points to the tree name where the server is contained. The value is in the SAP form
(ASCII characters set restricted by SAP).

flags
(OUT) Returns 0x00000001 if the server's root-most partition is a master replica.

treeName

(OUT) Points to the "enabled" tree name (in the Unicode character set).

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWDSGetDSVerlnfo returns version information regarding the DS.NLM running on a specific
server. Each return value is optional (that is, passing a NULL as the pointer disables the return of the
information).

To return the letter with the NDS/eDirectory version, use the NWDSReadNDSInfo function.

NCP Calls

None

See Also

NWDSReadNDSInfo (page 336), NWGetNWNetVersion (page 415)

202 NDK: Novell eDirectory Core Services

NWDSGetEffectiveRights

Returns a summary of a subject’s rights with respect to operations on a specified object or an

attribute of an object.
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsacl.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetEffectiveRights
NWDSContextHandle context,

pnstr8 subjectName,

pnstr8 objectName,

pnstr8 attrName,

pnuint32 privileges);
Pascal

uses netwin32

Function NWDSGetEffectiveRights
(context : NWDSContextHandle;
subjectName : pnstr8;
objectName : pnstr8;
attrName : pnstr8;
privileges : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subjectName

(IN) Points to the name of the object to which the privileges are granted.

Functions 203

objectName

(IN) Points to the name of the object to which access may be granted.

attrName

(IN) Points to the name of the attribute to which access may be granted.

privileges

(OUT) Points to the privileges granted to subjectName (see Section 5.18, “eDirectory Access
Control Rights,” on page 477).

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
Ox89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

If the return value is ERROR _NO_SUCH_ENTRY, no privilege set exists for the specified subject/
object pair, and the subject has no rights with respect to the object. It can also indicate the object
does not exist.

If the object exists but the subject does not exist, NWDSGetEffectiveRights returns a value of
SUCCESSFUL and privileges is set to NULL.

Access to information about objects stored in eDirectory is granted through access control lists
(ACLs). The ACL is an attribute defined by the eDirectory schema and regulates access to its
associated object or attribute. The ACL can be read or modified by calling NWDSRead and
NWDSModifyObject. Likewise, other access operations can be applied to the ACL.

The ACL grants access privileges to a specified object, called the subject, regarding the object the
ACL protects. Optionally, privileges may be granted with respect to a specified attribute of the
protected object.

A subject can inherit access to an object through various security equivalences.
NWDSGetEffectiveRights provides a summary of all cases where a particular subject may receive

204 NDK: Novell eDirectory Core Services

access to a particular object. (The value for individual ACLs can be read or modified using the
standard Access Services.)

The subject can be the name of the objects in eDirectory, or it can be one of the following "special"
subjects:

[Creator]
[Public]
[Root]
[Self]

The [Inheritance Mask] special subject cannot be used. NWDSGetEffectiveRights will return -601,
ERR_NO SUCH_ENTRY, when trying to get the inheritance mask for a container or user.

The attrName parameter specifies an attribute of the object for which the effective rights of the
subject are requested. The attribute can also be one of the following "special" attribute names:

[Al]l Attributes Rights]
[Entry Rights]

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

Functions 205

NWDSGetMonitoredConnRef

Retrieves a monitored connection reference.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSGetMonitoredConnRef (
NWDSContextHandle context,
pnuint32 connRef) ;

Pascal

uses netwin32

Function NWDSGetMonitoredConnRef
(context : NWDSContextHandle;
Var connRef : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

connRef

(OUT) Points to the connection reference.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

206 NDK: Novell eDirectory Core Services

Remarks

A monitored connection reference is set only if NWDSLogin has been called. For multiple tree
support, the tree name specified in the context handle is used to specify which monitored connection
reference to retrieve.

If the tree name is not set in the context, the preferred tree will be used. For requesters that do not
support multiple trees, if the tree name is specified (a NULL string is not returned to the eDirectory
libraries) and if the tree name is different from the preferred tree, an error will be returned.

To make use of the connection reference, a connection handle must be opened using the connection
reference.

NCP Calls

None

See Also

NWDSOpenMonitoredConn (page 299), NWCCOpenConnByRef (http://developer.novell.com/
ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk661.html)

Functions 207

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk661.html

NWDSGetNDSInfo

Retrieves NDSPING information.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetNDSInfo (
NWDSContextHandle context,

pBuf T resultBuffer,
nflag32 requestedField,
nptr data) ;

Pascal

uses netwin32

Function NWDSGetNDSInfo
(context : NWDSContextHandle;
resultBuffer : pBuf T;
requestedField : nflag32;
data : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

resultBuffer
(IN) Points to the buffer filled by a call to the NWDSReadNDSInfo function.

requestedField

(IN) Specifies the DSPING flag for which information is needed (see Section 5.19, “eDirectory
Ping Flags,” on page 479).

data
(OUT) Points to information specified in requestedField.

208 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetNDSInfo retrieves DSPING information, one field per call, returned in the resultBuffer of
NWDSReadNDSInfo. The fields in the resultBuffer can be called in any order, and information in a
particular field can be retrieved multiple times. Retrieval can continue until the resultBuffer has
been reused or freed.

For instructions on how to use NWDSGetNDSInfo, see “Accessing eDirectory Ping Information”
on page 54.

NCP Calls

None

See Also

NWDSReadNDSInfo (page 336),

Functions 209

NWDSGetObjectCount

Returns the number of objects whose information is stored in a result buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetObjectCount (
NWDSContextHandle context,

pBuf T buf,
pnuint32 objectCount) ;
Pascal

uses netwin32

Function NWDSGetObjectCount
(context : NWDSContextHandle;
buf : pBuf T;
objectCount : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

objectCount

(OUT) Points to the number of objects whose information is stored in the result buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

210 NDK: Novell eDirectory Core Services

Remarks

NWDSGetObjectCount must be the first function used to read a result buffer containing information
about objects, such as result buffers filled in by NWDSList, NWDSRead, and NWDSSearch. See

these functions for more information.

NCP Calls

None

See Also

NWDSGetAttrName (page 173), NWDSGetAttrVal (page 175), NWDSGetObjectName (page 214),
NWDSList (page 248), NWDSRead (page 327), NWDSSearch (page 383)

Functions 211

NWDSGetObjectHostServerAddress

Returns the addresses of the server where an object is located.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetObjectHostServerAddress (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 serverName,

pBuf T netAddresses) ;
Pascal

uses netwin32

Function NWDSGetObjectHostServerAddress
(context : NWDSContextHandle;
objectName : pnstr8;

serverName : pnstr§;
netAddresses : pBuf T
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of an eDirectory object.

serverName

(OUT) Points to the name of the server where an object is located.

212 NDK: Novell eDirectory Core Services

netAddresses

(OUT) Points to a buffer containing the network addresses of the associated server.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetObjectHostServerAddress works only for objects having "Host Server" as an attribute
(such as Volume objects). Servers can have more than one address, such as an [PX and an IP
address. The netAddresses parameter receives these addresses.

For information on retrieving the addresses from the buffer, see “Finding the Host Server of an
Object” on page 60.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSComputeAttrValSize (page 130), NWDSGetAttrCount (page 169), NWDSGetAttrVal
(page 175)

Functions 213

NWDSGetObjectName

Returns the name and information about the next object whose information is stored in a result
buffer.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetObjectName (
NWDSContextHandle context,

pBuf T buf,

pnstr8 objectName,

pnuint32 attrCount,

pObject Info T objectInfo);
Pascal

uses netwin32

Function NWDSGetObjectName
(context : NWDSContextHandle;
buf : pBuf T;
objectName : pnstr8;
attrCount : pnuint32;
objectInfo : pObject Info T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

objectName

(OUT) Points to the name of the object whose information is at the current position in the
buffer.

214 NDK: Novell eDirectory Core Services

attrCount

(OUT) Points to the number of attributes following the object name.

objectInfo
(OUT) Points to additional information about the object (size of Object_Info T).

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetObjectName should be called once for each object in the buffer. The count of objects
whose information is stored in the buffer is determined by calling NWDSGetObjectCount.

Use the NWDSGetObjectName function when the context handle has the default values for the
DCK DSI FLAGS. If you have changed the requested DSI information, use the
NWDSGetObjectNameAndInfo function to retrieve the information. For more information, see
“DCK_DSI FLAGS Key” on page 21.

NOTE: You must retrieve all of the information about the current object before calling
NWDSGetObjectName for the next object.

The buf parameter points to a Buf T filled in by NWDSList, NWDSRead, or NWDSSearch.

The objectName parameter points to the name of the current object in the buffer. The object’s name
is abbreviated if the context flag associated with DCV_CANONICALIZE NAMES is set. Types are
removed from the name if the flag associated with DCV_TYPELESS NAMES is set.

You must allocate space for the object’s name. The size of the allocated memory is
((MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1 for single-byte
characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

The attrCount parameter points to the number of attributes that follow the object name. The attribute
count is always zero for a buffer returned by NWDSList since NWDSList returns only the names of
objects. The attribute count will be zero or greater for a buffer returned by NWDSSearch.

The objectInfo parameter points to additional information about the object. You must allocate
memory to retrieve this information (sizeof(Object Info T)).

For more information, see NWDSList, NWDSRead, or NWDSSearch.

NCP Calls

None

Functions

215

See Also

NWDSGetAttrName (page 173), NWDSGetAttrVal (page 175), NWDSGetObjectCount (page 210),
NWDSList (page 248), NWDSRead (page 327), NWDSSearch (page 383)

216 NDK: Novell eDirectory Core Services

NWDSGetObjectNameAndinfo

Returns the name and information about the next object whose information is stored in a result

buffer.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetObjectNameAndInfo
NWDSContextHandle context,

pBuf T buf,

pnstr8 objectName,

pnuint32 attrCount,

ppnstr8 objectInfo);
Pascal

uses netwin32

Function NWDSGetObjectNameAndInfo (
context : NWDSContextHandle;
buf : pBuf T;
objectName : pnstr8;
attrCount : pnuint32;
objectInfo : ppnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.
buf

(IN) Points to the result buffer of a previous operation.

objectName

(OUT) Points to the name of the object whose information is at the current position in the

buffer.

Functions 217

attrCount

(OUT) Points to the number of attributes following the object name.

objectInfo
(OUT) Points to additional information about the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetObjectNameAndInfo should be called once for each object in the buffer. The count of
objects whose information is stored in the buffer is determined by calling the
NWDSGetObjectCount function.

Use the NWDSGetObjectNameAndInfo function when you have defined the return values for the
DCK DSI FLAGS in the context handle. If you are using default values, use the
NWDSGetObjectName function to retrieve the information. For more information, see
“DCK_DSI FLAGS Key” on page 21

NOTE: You must retrieve all of the information about the current object before calling
NWDSGetObjectNameAndInfo for the next object.

The buf parameter points to a Buf T filled in by the NWDSList, NWDSRead,
NWDSReadObjectDSIInfo, or NWDSSearch functions.

The object name in the objectName parameter is abbreviated if the context flag associated with
DCV_CANONICALIZE NAMES is set. Types are removed from the name if the flag associated
with DCV_TYPELESS NAMES is set.

You must allocate space for the object name. The size of the allocated memory is
((MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1 for single-byte
characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

The attribute count in the attrCount parameter is always zero for a buffer returned by the NWDSList
function since the NWDSList function returns only object information and not attribute information.
The attribute count will be zero or greater for a buffer returned by the NWDSSearch or NWDSRead
functions.

You must allocate memory to retrieve the information in the objectInfo parameter. Use the
NWDSGetDSIInfo function to read the information in the buffer pointed to by objectInfo. Use this
pointer as the buf parameter for the NWDSGetDSIInfo function.

For more information, see the NWDSList, NWDSRead, and NWDSSearch functions.

218 NDK: Novell eDirectory Core Services

NCP Calls

None

See Also

NWDSGetAttrName (page 173), NWDSGetAttrVal (page 175), NWDSGetDSIInfo (page 199),
NWDSGetObjectCount (page 210), NWDSReadObjectDSIInfo (page 338), NWDSList (page 248),
NWDSRead (page 327), NWDSSearch (page 383)

Functions 219

NWDSGetPartitionExtinfo

Retrieves replica information from a result buffer filled by the NWDSListPartitionsExtInfo
function.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetPartitionExtInfo (
NWDSContextHandle context,

pnstr8 infoPtr,

pnstr8 limit,

nflag32 infoFlag,

pnuint32 length,

nptr data) ;
Pascal

uses netwin32

Function NWDSGetPartitionExtInfo (
context : NWDSContextHandle;
infoPtr : pnstr8;
limit : pnstr8;
infoFlag : nflag32;
length : pnuint32;
data : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoPtr
(IN) Points to the information returned from calling the NWDSListPartitionsExtInfo function.
limit
(IN) Points to the end of the buffer pointed to by the infoPtr parameter and used for overflow
checking.

220 NDK: Novell eDirectory Core Services

infoFlag

(IN) Specifies the data element to retrieve from the buffer pointed to by the infoPtr parameter.
For a list of possible flags, see Section 5.20, “DSP Replica Information Flags,” on page 481.

length

(IN) Points to the size of the returned information.

data
(OUT) Points to the returned information.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

Call NWDSGetPartitionExtInfo repeatedly to access additional information stored in the infoPtr
parameter.

For the complete steps for retrieving partition information see “Listing Partitions and Retrieving
Partition Information” on page 66.

NCP Calls

None

See Also

NWDSGetPartitionExtInfoPtr (page 222), NWDSGetServerName (page 234), NWDSListPartitions
(page 264), NWDSListPartitionsExtInfo (page 267)

Functions 221

NWDSGetPartitionExtinfoPtr

Retrieves a pointer to the replica information from a result buffer filled by the
NWDSListPartitionsExtInfo function.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetPartitionExtInfoPtr (
NWDSContextHandle context,

pBuf T buf,

ppnstr8 infoPtr,

ppnstr8 infoPtrEnd) ;
Pascal

uses netwin32

Function NWDSGetPartitionExtInfoPtr (
context : NWDSContextHandle;
buf : pBuf T;
infoPtr : ppnstr8;
infoPtrEnd : ppnstr8
) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer received from calling the NWDSListPartitionsExtInfo function.

infoPtr

(OUT) Points to the returned information.

infoPtrEnd
(OUT) Points to the end of the returned information.

222 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

See Section 5.20, “DSP Replica Information Flags,” on page 481.

For the complete steps for retrieving partition information, see the “Listing Partitions and Retrieving
Partition Information” on page 66.

NCP Calls

None

See Also

NWDSGetPartitionExtInfo (page 220), NWDSGetServerName (page 234), NWDSListPartitions
(page 264), NWDSListPartitionsExtInfo (page 267)

Functions 223

NWDSGetPartitioninfo

Retrieves replica information from a result buffer filled by NWDSListPartitions.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetPartitionInfo (
NWDSContextHandle context,

pBuf T buf,

pnstr8 partitionName,

pnuint32 replicaType) ;
Pascal

uses netwin32

Function NWDSGetPartitionInfo
(context : NWDSContextHandle;
buf : pBuf T;
partitionName : pnstr8;
replicaType : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer to be read.

partitionName

(OUT) Points to the name of the root object of a partition.

replicaType
(OUT) Points to the replica type (see Section 5.23, “Replica Types,” on page 483).

224 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The buf parameter points to a Buf T filled by NWDSListPartitions.

The partitionName parameter points to a memory location containing the distinguished name of a
partition for which replica information has been found. You must allocate space for the partition
name. The size of the allocated memory is (MAX_ DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

The replicaType parameter points to NWREPLICA TYPE containing information about the type of
replica the partition is. The replica types are enumerated in NWDSDEFS.H (for a description, see
Section 5.23, “Replica Types,” on page 483).

For the complete steps for retrieving partition information, see “Listing Partitions and Retrieving
Partition Information” on page 66.

NCP Calls

None

See Also

NWDSGetServerName (page 234), NWDSListPartitions (page 264)

Functions 225

NWDSGetPartitionRoot

Returns the partition root name of the given object.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetPartitionRoot (
NWDSContextHandle context,

pnstr8 objectName,
pnstr8 partitionRoot) ;
Pascal

uses netwin32

Function NWDSGetPartitionRoot
(context : NWDSContextHandle;
objectName : pnstr8;
partitionRoot : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object’s name.

partitionRoot

(OUT) Points to the partition root name. You must allocate memory for partitionRoot ; either
MAX DN BYTES or MAX DN CHARS.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

226 NDK: Novell eDirectory Core Services

0x8996
0x89E2
Ox89E3
0x89E4
0x89E5
0x89FD
0x89FD
Ox89FE
Ox89FF

nonzero value

SERVER_OUT_OF_MEMORY
TOO_FEW_FRAGMENTS
TOO_MANY_FRAGMENTS
PROTOCOL_VIOLATION
SIZE_LIMIT_EXCEEDED
UNKNOWN_REQUEST
INVALID_PACKET_LENGTH
BAD_PACKET

Failure not related to eDirectory

Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

If the object is itself a partition root, partitionRoot is the same as the object name.

The caller must allocate space for partitionRoot. The size of the memory allocated is

((MAX _DN_CHARS)+1)*sizeof(character size), where character size is 1 for single-byte
characters and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

Functions 227

NWDSGetServerAddresses (obsolete 3/98)

Returns the network addresses of the server associated with a connection handle. This function is
now obsolete. Call NWDSGetServerAddresses2 (page 230) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetServerAddresses (
NWDSContextHandle context,

NWCONN HANDLE connHandle,

pnuint32 countNetAddress,

pBuf T netAddresses) ;
Pascal

uses netwin32

Function NWDSGetServerAddresses
(context : NWDSContextHandle;
connHandle : NWCONN_ HANDLE;
countNetAddress : pnuint32;
netAddresses : pBuf T

) : NWDSCCODE;

Parameters
context
(IN) Specifies the eDirectory Access context for the request.

conn

(IN) Specifies the connection handle for the target server.

countNetAddress

(OUT) Points to the number of network addresses contained in netAddresses.

228 NDK: Novell eDirectory Core Services

netAddresses

(OUT) Points to a buffer containing the network address associated with the server.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

Servers can have more than one address, such as an IPX and an IP address. netAddresses receives
these addresses.

For more information, see “Retrieving Addresses of a Connected Server” on page 57.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply
53 Get Server Address

See Also

NWDSComputeAttrValSize (page 130), NWDSGetAttrCount (page 169), NWDSGetAttrVal
(page 175)

Functions 229

NWDSGetServerAddresses2

Returns the network addresses of the server associated with a connection handle.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetServerAddresses? (
NWDSContextHandle context,

NWCONN_HANDLE connHandle,

pnuint32 countNetAddress,

pBuf T netAddresses) ;
Pascal

uses netwin32

Function NWDSGetServerAddresses?2
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
countNetAddress : pnuint32;
netAddresses : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle for the target server.

countNetAddress

(OUT) Points to the number of network addresses contained in the netAddresses parameter.

230 NDK: Novell eDirectory Core Services

netAddresses

(OUT) Points to a buffer containing the network address associated with the server.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

Servers can have more than one address, such as an IPX and an IP address. The netAddresses
parameter receives these addresses.

For more information, see “Retrieving Addresses of a Connected Server” on page 57.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply
53 Get Server Address

See Also

NWDSComputeAttrValSize (page 130), NWDSGetAttrVal (page 175)

Functions 231

NWDSGetServerDN

Returns the server’s distinguished name.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetServerDN (
NWDSContextHandle context,

NWCONN_HANDLE connHandle,
pnstr8 serverDN) ;
Pascal

uses netwin32

Function NWDSGetServerDN
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
serverDN : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection to the server to be queried.

serverDN

(OUT) Points to the distinguished name of the server.

232 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The connHandle parameter is the connection handle to the server.

The caller must allocate space to hold the distinguished name of the server and set serverDN to point
to it. The size of the allocated memory is (MAX DN _CHARS+1)*sizeof(character size) where
character size is 1 for single-byte characters and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

Whether the server name is returned as a complete name or a partial name depends upon the setting
of the context flag associated with DCV_CANONICALIZE NAMES. For more information, see
Section 1.1, “Context Handles,” on page 15.

NWDSGetServerDN does not work on a local server with a connection 0. Call AttachToFileServer
then GetCurrentConnection and pass the returned value to NWDSGetServerDN to return the
server’s DN. If connection 0 is used, a ERR_NO CONNECTION error is returned.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply
53 Get Server Address

Functions 233

NWDSGetServerName

Returns the name of the current server, as well as the number of partitions on the server, from a
result buffer.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetServerName (
NWDSContextHandle context,

pBuf T buf,

pnstr8 serverName,

pnuint32 partitionCount) ;
Pascal

uses netwin32

Function NWDSGetServerName
(context : NWDSContextHandle;
buf : pBuf T;

serverName : pnstr8;
partitionCount : pnuint32
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

serverName

(OUT) Points to the server name.

partitionCount

(OUT) Points to the number of partition names in the result buffer.

234 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSGetServerName should be the first function called to read from a result buffer returned by
NWDSListPartitions.

The buf parameter points to a Buf T filled by NWDSListPartitions.

The serverName parameter points to a memory location containing the distinguished name of the
server for which replica information has been found. You must allocate space for the server name.
The size of the allocated memory is (MAX DN _CHARS)+1%*)sizeof(character size) where
character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

For the complete steps for retrieving partition information, see “Listing Partitions and Retrieving
Partition Information” on page 66.

NCP Calls

None

See Also

NWDSGetPartitionInfo (page 224), NWDSListPartitions (page 264)

Functions 235

NWDSGetSyntaxCount

Returns the number of eDirectory syntaxes whose information is stored in a result buffer filled by
NWDSReadSyntaxes.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetSyntaxCount (
NWDSContextHandle context,

pBuf T buf,
pnuint32 syntaxCount) ;
Pascal

uses netwin32

Function NWDSGetSyntaxCount
(context : NWDSContextHandle;
buf : pBuf T;
syntaxCount : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the buffer being read.

syntaxCount

(OUT) Points to the number of syntaxes stored in the buffer.

Return Values

0x0000 0000 SUCCESSFUL

236 NDK: Novell eDirectory Core Services

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Before reading the syntax information from a result buffer filled by NWDSReadSyntaxes, you must
first call NWDSGetSyntaxCount to determine the number of syntaxes whose information is stored
in the buffer.

When NWDSGetSyntaxCount returns, the location pointed to by syntaxCount specifies the number
of syntaxes whose information is stored in the buffer. To remove the syntax information from the
result buffer, call NWDSGetSyntaxDef once for each syntax whose information is stored in the
buffer.

For complete steps on retrieving information about the syntaxes in the eDirectory schema, see
“Retrieving Syntax Names and Definitions” on page 73.

NCP Calls

None

See Also

NWDSGetSyntaxDef (page 238), NWDSReadSyntaxes (page 348)

Functions 237

NWDSGetSyntaxDef

Retrieves the next eDirectory-syntax definition from a result buffer filled by NWDSReadSyntaxes.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetSyntaxDef (
NWDSContextHandle context,

pBuf T buf,

pnstr8 syntaxName,

pSyntax Info T syntaxDef) ;
Pascal

uses netwin32

Function NWDSGetSyntaxDef
(context : NWDSContextHandle;
buf : pBuf T;
syntaxName : pnstr8;
syntaxDef : pSyntax Info T

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the result buffer being read.

syntaxName

(OUT) Points to the name of the syntax whose definition is stored at the current position in the
result buffer.

syntaxDef
(OUT) Points to the syntax definition.

238 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Before the initial call to NWDSGetSyntaxDef, call NWDSGetSyntaxCount to determine the number
of syntaxes whose information is stored in the result buffer. Then call NWDSGetSyntaxDef once for
each syntax whose information is stored in the result buffer.

The buf parameter points to a result buffer containing information about syntaxes. This result buffer
is allocated by NWDSAllocBuf and filled by NWDSReadSyntaxes.

The syntaxName parameter points to the name of the syntax whose definition is in the result buffer.
The user must allocate memory to store the name. The size of the allocated memory is
(IMAX_SCHEMA NAMES CHARS)+1) * sizeof(character size), where character size is 1 for
single-byte characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One
character is used for NULL termination.

The syntaxDef parameter points to the remainder of the syntax definition. If NWDSReadSyntaxes
was called with a request for syntax names only (DS_SYNTAX NAMES), syntaxDef is ignored by
NWDSGetSyntaxDef and must be NULL.

The user must allocate memory, sizeof(Syntax Info_T), to receive the syntax definition.

For the complete steps on retrieving information about the syntaxes in the eDirectory schema, see
“Retrieving Syntax Names and Definitions” on page 73.

NCP Calls

None

See Also

NWDSGetSyntaxCount (page 236), NWDSReadSyntaxes (page 348)

Functions 239

NWDSGetSyntaxID

Returns the syntax ID of a given attribute.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSGetSyntaxID (
NWDSContextHandle context,

pnstr8 attrName,
pnuint32 syntaxID) ;
Pascal

uses netwin32

Function NWDSGetSyntaxID
(context : NWDSContextHandle;
attrName : pnstr8;
syntaxID : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the attribute name whose syntax ID you want to determine.

syntaxID
(OUT) Points to the syntax ID of the attribute (see Section 5.26, “Syntax IDs,” on page 487).

240 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Syntax IDs are enumerated in the nwdsdefs.h file. A description of syntax definitions can be found
in “Attribute Syntax Definitions” (NDK: Novell eDirectory Schema Reference).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

Functions 241

NWDSInitBuf

Initializes a buffer for use as a request buffer for an eDirectory function.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSInitBuf (
NWDSContextHandle context,

nuint32 operation,
pBuf T buf);
Pascal

uses netwin32

Function NWDSInitBuf
(context : NWDSContextHandle;
operation : nuint32;
buf : pBuf T

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

operation

(IN) Specifies the eDirectory operation for which the buffer is being initialized (see
Section 5.3, “Buffer Operation Types and Related Functions,” on page 464).

buf
(IN) Points to the buffer being initialized.

Return Values

0x0000 0000 SUCCESSFUL

242 NDK: Novell eDirectory Core Services

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Only request buffers need to be initialized. Result buffers do not require initialization.

First allocate the request buffer by calling NWDSAIllocBuf. Then call NWDSInitBuf to initialize the
buffer for a particular type of operation.

The buffer pointed to by the buf parameter is updated to reflect the selected operation.

NCP Calls

None

See Also

NWDSAIllocBuf (page 95), NWDSFreeBuf (page 158)

Functions 243

NWDSInspectEntry

Inspects an object for correctness.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSInspectEntry (
NWDSContextHandle context,

pnstr8 serverName,

pnstr8 objectName,

pBuf T errBuffer);
Pascal

uses netwin32

Function NWDSInspectEntry
(context : NWDSContextHandle;
serverName : pnstr8;
objectName : pnstr8;
errBuffer : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Points to the server name to which to connect.

objectName

(IN) Points to the object name to be inspected.

244 NDK: Novell eDirectory Core Services

errBuffer

(OUT) Points to the Buf T structure which is a result buffer containing the requested
information.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSInspectEntry is a diagnostic function allowing you to inspect an object in the replica on a
specific server to see if the object needs to be repaired.

If no partition exists on the server specified by serverName or the object does not exist in the
partition(s) on the specified server, NWDSInspectEntry returns ERR_ NO_SUCH_ENTRY.

After successful completion of this function call, the output buffer contains the following data:

Return Code nuint Success

Entry Size nuint Total number of bytes occupied by the entry’s base record and its attribute
values

Error Count nuint Number of errors found in the entry record on that server

Error Reports nuint List of error codes indicating errors in the entry record

NCP Calis

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

Functions 245

NWDSJoinPartitions

Joins a subordinate partition to its parent partition.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSJoinPartitions (
NWDSContextHandle context,

pnstr8 subordinatePartition,
nflag32 flags);
Pascal

uses netwin32

Function NWDSJoinPartitions
(context : NWDSContextHandle;
subordinatePartition : pnstr8;
flags : nflag32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subordinatePartition

(IN) Points to the name of the subordinate partition to be joined.

flags
Reserved; pass in NULL.

Return Values

These are common return values.

246 NDK: Novell eDirectory Core Services

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

For partitions to be joined, a single replica (Master) of both the parent and subordinate partitions
must exist. In addition, the master replicas must exist on the same server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddReplica (page 91), NWDSChangeReplicaType (page 122), NWDSSplitPartition
(page 394)

Functions 247

NWDSList

Lists the immediate subordinates of an object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSList (
NWDSContextHandle context,

pnstr8 object,

pnint ptr iterationHandle,

pBuf T subordinates) ;
Pascal

uses netwin32

Function NWDSList
(context : NWDSContextHandle;
object : pnstr8;
iterationHandle : pnint ptr;
subordinates : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object whose immediate subordinates are to be listed.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of NWDSList.

248 NDK: Novell eDirectory Core Services

subordinates

(OUT) Points to a result buffer containing an Object Info T structure for each subordinate.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSList returns an object's base class, entry flags, modification time, and subordinate object
count.

The function succeeds if the object specified by object is found in eDirectory, regardless of whether
there is any subordinate information to return.

If the name pointed to by the object parameter involves one or more aliases, the aliases are
dereferenced unless prohibited by the context flag associated with DCV_DEREF_ALIAS. For more
information, see Section 5.6, “Context Keys and Flags,” on page 467.

The results buffer pointed to by subordinates receives a sequence of Object Info T (page 452)
structures containing information about objects subordinate to the specified object.

The iterationHandle parameter controls the retrieval of list results larger than the result buffer
pointed to by subordinates.

Before the initial call to NWDSList, set the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSList returns from its initial call, the
location pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle is
not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent calls to NWDSList to
obtain further portions of the results. When the results are completely retrieved, the contents of the
iteration handle will be set to NO_MORE _ITERATIONS.

Functions

249

NOTE: On large networks, iterative processes, such as NWDSList, might take a long time to
complete. For example, listing all of the User objects on a corporate network might be too time
consuming. Developers should use NWDSCloselteration to allow users of their applications to abort
an iterative process that is taking too long to complete.

To end the List operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_LIST to free memory and states associated with the List operation.

For more information, see “Listing Objects in an eDirectory Container” on page 60.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSSearch (page 383)

250 NDK: Novell eDirectory Core Services

NWDSListAttrsEffectiveRights

Returns an object’s effective privileges on another object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsacl.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSListAttrsEffectiveRights (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 subjectName,

nbool8 allAttrs,

pBuf T attrNames,

pnint ptr iterationHandle,

pBuf T privilegeInfo);
Pascal

uses netwin32

Function NWDSListAttrsEffectiveRights
(context : NWDSContextHandle;
objectName : pnstr§;
subjectName : pnstr8;
allAttrs : nbool8;
attrNames : pBuf T;
iterationHandle : pnint ptr;
privilegeInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Functions 251

objectName

(IN) Points to the name of the eDirectory object whose access rights are to be checked.
subjectName

(IN) Points to the name of the eDirectory object to which the privileges are assigned.
allAttrs

(IN) Specifies whether all attributes should be returned.

attrNames

(IN) Points to a request buffer containing the names of the attribute definitions for which
information is to be returned.

iterationHandle

(IN/OUT) Points to the information needed to resume subsequent iterations of
NWDSListAttrsEffectiveRights.

privilegelnfo

(OUT) Points to a result buffer receiving the requested attribute names and privileges.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The subjectName parameter is the name of an eDirectory object. If subjectName is NULL, the name
of the currently logged-in object is used.

The allAttrs and attrNames parameters indicate which attributes you are requesting privileged
information about. If allAttrs is TRUE, privileged information about all optional and mandatory
attributes defined for the base class of the object are returned. NULL can also be passed for

252 NDK: Novell eDirectory Core Services

attrNames when allAttrs is TRUE. If allAttrs is FALSE, privileged information is returned only
about the attributes named in the buffer pointed to by attrNames.

The attrNames parameter points to a request buffer explicitly specifying the names of the attributes
for which information is to be returned.

The iterationHandle parameter controls retrieval of list results larger than the result buffer pointed to
by attrNames.

Before the initial call to NWDSListAttrsEffectiveRights, set the contents of the iteration handle
pointed to by iterationHandle to NO_MORE _ITERATIONS.

If the result buffer holds the complete results when NWDSListAttrsEffectiveRights returns from its
initial call, the location pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the
iteration handle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent
calls to NWDSListAttrsEffectiveRights to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be set to NO_ MORE _ITERATIONS.

NOTE: On large networks, iterative processes, such as NWDSListAttrsEffectiveRights, might take
a long time to complete. For example, listing all of the User objects on a corporate network might be
too time consuming. Developers should use NWDSCloselteration to allow users of their
applications to abort an iterative process that is taking too long to complete.

To end the list operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_READ to free memory and states associated with the List operation.

For more information, see “Determining the Effective Rights of an Object” on page 59.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSAllocBuf (page 95), NWDSGetAttrVal (page 175),
NWDSInitBuf (page 242)

Functions 253

NWDSListByClassAndName

Lists the immediate subordinates for an eDirectory object and restricts the list to subordinate objects
matching a specified object class and/or name.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSListByClassAndName (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 className,

pnstr8 subordinateName,

pnint ptr iterationHandle,

pBuf T subordinates ;)
Pascal

uses netwin32

Function NWDSListByClassAndName
(context : NWDSContextHandle;
objectName : pnstr8;
className : pnstr8;
subordinateName : pnstr8;
iterationHandle : pnint ptr;
subordinates : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object whose subordinates are to be listed.

254 NDK: Novell eDirectory Core Services

className

(IN) Points to a class name to be used as a filter. This can be NULL.

subordinateName

(IN) Points to an object name to be used as a filter. This can be NULL.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSListByClassAndName (set to NO_MORE_ITERATIONS initially).

subordinates

(OUT) Points to a result buffer containing a list of subordinate objects matching the search
criteria.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
OxFEOD UNI_NO_DEFAULT

OxFEOF UNI_HANDLE_MISMATCH
OxFEB5 ERR_NULL_POINTER
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

NWDSListByClassAndName controls the list output with filters on the class, on the name, or on
both.

If the context handle is set for partial dot names and the flag associated with

DCV_TYPELESS NAMES is set, the returned list of object names in the buffer will be typeless. If
the flag is off, the returned list will contain typed names. For more information, see Section 1.1,
“Context Handles,” on page 15.

Functions 255

The name given for the className ’s filter is the name of an object's base class, such as User,
Computer, or NCP Server.

The value given for the subordinateName ’s filter can be one of the following:

¢ The left-most name of an object, such as Adam or Graphics Printer.
+ A string with asterisks (*), such as A* or Gr*.

¢ NULL, which means any name is valid.

The location of the subordinate object(s) in the eDirectory tree is immediately subordinate to the
object specified by objectName. It is not relative to the current name context in eDirectory specified
by context.

The relationship between className and subordinateName is an "AND" relationship.

¢ When className and subordinateName are provided, the list of immediate subordinate objects
is restricted by both filters.

+* When className is NULL and subordinateName is NULL, all the immediate subordinates are
returned.

¢ When className is provided and subordinateName is NULL, the list of immediate
subordinates restricted only by className’s filter.

¢ When className is NULL and subordinateName is provided, the list of immediate
subordinates is restricted only by subordinateName’s filter.

The following examples show how to use wildcards for untyped names:
c* Any object whose left-most name begins with a "c"
character.
M*y Any object beginning with "M" and ending with "y"
such as Mary.

If the wildcard name specified for subordinateName includes a type, such as "CN," the name must
include the equals (=) sign. The following examples show how to use wildcards for typed names:
cn=* Any object whose left-most name is a common name.
cn=c* Any object whose left-most name is a common name
and begin with "c."
ox=* Any object whose left-most name has a naming
attribute beginning with an "o," such as O or OU.
o*=c* Any object whose left-most name has a naming
attribute beginning with an "o," and whose name
begins with "c."

The iterationHandle parameter controls retrieval of search results larger than the result buffer
pointed to by subordinates.

Before the initial call to NWDSListByClassAndName, set the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSListByClassAndName returns from its
initial call, the location pointed to by iterationHandle is set to NO_ MORE ITERATIONS. If the
iterationHandle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent
calls to NWDSListByClassAndName to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be set to NO_MORE _ITERATIONS.

256 NDK: Novell eDirectory Core Services

NOTE: On large networks, iterative processes, such as NWDSListByClassAndName, might take a
lot of time to complete. For example, listing all of the User objects on a corporate network might be
too time consuming. Developers should use NWDSCloselteration to allow users of their
applications to abort an iterative process that is taking too long to complete.

To end the List operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_LIST to free memory and states associated with the List operation.

Allocate the result buffer pointed to by subordinates, by calling NWDSAllocBuf. This result buffer
does not need to be initialized because it is a result buffer. For more information on reading the
results, see “Retrieving Results from eDirectory Output Buffers” on page 53.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSList (page 248)

Functions 257

NWDSListContainableClasses

Returns the names of the object classes that can be contained by (subordinate to) the specified object
in the eDirectory tree.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSListContainableClasses (
NWDSContextHandle context,

pnstr8 parentObject,

pnint ptr iterationHandle,

pBuf T containableClasses);
Pascal

uses netwin32

Function NWDSListContainableClasses
(context : NWDSContextHandle;
parentObject : pnstr8;
iterationHandle : pnint ptr;
containableClasses : pBuf T

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

parentObject

(IN) Points to the name of the parent object for which containable classes are to be listed.

iterationHandle

(IN/OUT) Points to the information needed to resume subsequent iterations of
NWDSListContainableClasses.

258 NDK: Novell eDirectory Core Services

containableClasses

(OUT) Points to a buffer containing the names of object classes contained by the specified
parent object.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSListContainableClasses can be used to build a list of object classes that can be used to create
objects subordinate to the parent object specified by parentObject.

The parentObject parameter points to the name of an eDirectory object for which containable object-
classes are to be listed. If this parent object is not a valid container object, an error is returned.

The iterationHandle parameter controls retrieval of results larger than the buffer pointed to by
containableClasses.

Before the initial call to NWDSListContainableClasses, set the contents of the iteration handle
pointed to by iterationHandle to NO_ MORE ITERATIONS.

If the result buffer holds the complete results when NWDSListContainableClasses returns from its
initial call, the location pointed to by iterationHandle is set to NO_MORE ITERATIONS. If
iterationHandle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent
class to NWDSListContainableClasses to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be set to NO_ MORE _ITERATIONS.

NOTE: To end the List operation before all of the results have been retrieved, call
NWDSCloselteration with a value of DSV_LIST CONTAINABLE CLASSES to free memory and
states associated with NWDSListContainableClasses.

The level of granularity for partial results (those split across multiple iterations) is an individual
class name.

Functions 259

The containableClasses parameter points to a result buffer that receives the list of names of object
classes that can be used to create objects contained by the specified parent object. The result buffer
contains the names of only the object classes marked as effective in the eDirectory Schema (those
from which objects can be created). Alias is always included in the list.

For more information, see “Listing Containable Classes” on page 69.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSAddObject (page 87)

260 NDK: Novell eDirectory Core Services

NWDSListContainers

Lists container objects subordinate to a specific eDirectory object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSListContainers (
NWDSContextHandle context,

pnstr8 object,

pnint ptr iterationHandle,

pBuf T subordinates) ;
Pascal

uses netwin32

Function NWDSListContainers
(context : NWDSContextHandle;
object : pnstr8;
iterationHandle : pnint ptr;
subordinates : pBuf T

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.
object
(IN) Points to the name of the object whose subordinate container objects are to be listed.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSListContainers. This should be initially set to NO MORE ITERATIONS.

Functions 261

subordinates

(OUT) Points to a result buffer containing a list of subordinate container objects.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
OxFEO1 ERR_BAD_CONTEXT

OxFEOD UNI_NO_DEFAULT

OxFEOF UNI_HANDLE_MISMATCH
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

The name specified by objectName is relative to the current name context in context if partial dot
format is used and the DCV_CANONICALIZE NAMES flag is set. It can be typed or untyped. For
more information, see Section 1.1, “Context Handles,” on page 15.

iterationHandle controls retrieval of search results larger than the result buffer pointed to by
subordinates.

Before the initial call to NWDSListContainers, set the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSListContainers returns from its initial
call, the location pointed to by iterationHandle is set to NO_ MORE ITERATIONS. If
iterationHandle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent
calls to NWDSListContainers to obtain further portions of the results. When the results are
completely retrieved, the contents of iterationHandle will be set to NO_ MORE ITERATIONS.

NOTE: On large networks, iterative processes, such as NWDSListContainers, might take a long
time to complete. For example, listing all of the User objects on a corporate network might be too
time consuming. Developers should use NWDSCloselteration (page 126) to allow users of their
applications to abort an iterative process that is taking too long to complete.

262 NDK: Novell eDirectory Core Services

To end the List operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_SEARCH to free memory and states associated with the List operation.

The contents of the result buffer pointed to by subordinates are overwritten with each subsequent
call to NWDSListContainers. Remove the contents from the result buffer before each subsequent
call to NWDSListContainers.

Allocate the result buffer pointed to by subordinates, by calling NWDSAllocBuf. This result buffer
does not need to be initialized because it is a result buffer. For more information on reading the
results, see “Retrieving Results from eDirectory Output Buffers” on page 53.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSList (page 248)

Functions 263

NWDSListPartitions

Returns information about the replicas of partitions stored on the specified server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSListPartitions (
NWDSContextHandle context,

pnint ptr iterationHandle,

pnstr8 server,

pBuf T partitions);
Pascal

uses netwin32

Function NWDSListPartitions (
context : NWDSContextHandle;
iterationHandle : pnint ptr;

server : pnstr8;
partitions : pBuf T
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of the operation.

server

(IN) Points to the server name whose list of partitions is requested.

264 NDK: Novell eDirectory Core Services

partitions

(OUT) Points to a result buffer that receives the name and replica type for each partition stored
on the specified server.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The iterationHandle parameter controls retrieval of results larger than the result buffer pointed to by
subordinates.

Before the initial call to NWDSListPartitions, set the contents of the iteration handle pointed to by
iterationHandle to NO_ MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSListPartitions returns from its initial call,,
the location pointed to by iterationHandle is NO_MORE_ITERATIONS. If the iteration handle is
not NO_ MORE ITERATIONS, use the iteration handle for subsequent calls to NWDSListPartitions
to obtain further portions of the results. When the results are completely retrieved, the contents of
the iteration handle will be NO_MORE _ITERATIONS.

To end the list operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_LIST PARTITIONS to free memory and states associated with the list
operation.

For more information, see “Listing Partitions and Retrieving Partition Information” on page 66.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info

Functions 265

0x2222 104 01 Ping for eDirectory NCP
0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSGetServerName (page 234), NWDSGetPartitionInfo
(page 224)

266 NDK: Novell eDirectory Core Services

NWDSListPartitionsExtinfo

Returns extended information about the replicas stored on the specified server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N GLOBAL LIBRARY (NWDSCCODE) NWDSListPartitionsExtInfo (
NWDSContextHandle context,

pnint ptr iterationHandle,

pnstr8 server,

nflag32 DSPFlags,

pBuf T partitions);
Pascal

uses netwin32

Function NWDSListPartitionsExtInfo
(context : NWDSContextHandle;
iterationHandle : pnint ptr;
server : pnstr8;

DSPFlags : nflag32
partitions : pBuf T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of the operation.

server

(IN) Points to the server name whose list of partitions is requested.

Functions 267

DSPFlags

(IN) Points to the DSP information flags (see Section 5.20, “DSP Replica Information Flags,”
on page 481).

partitions

(OUT) Points to a result buffer that receives the name and replica type for each partition stored
on the specified server.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
0x89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
Ox89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

The iterationHandle parameter controls retrieval of results larger than the result buffer pointed to by
subordinates.

Before the initial call to NWDSListPartitionsExtInfo, set the contents of the iteration handle pointed
to by iterationHandle to NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSListPartitionsExtInfo returns from its
initial call, the location pointed to by iterationHandle is NO_MORE ITERATIONS. If the iteration
handle is not NO_MORE _ITERATIONS, use the iteration handle for subsequent calls to
NWDSListPartitionsExtInfo to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be NO_MORE ITERATIONS.

To end the list operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_LIST PARTITIONS to free memory and states associated with the list
operation.

For more information, see “Listing Partitions and Retrieving Partition Information” on page 66.

268 NDK: Novell eDirectory Core Services

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSGetPartitionExtInfo (page 220),
NWDSGetPartitionExtInfoPtr (page 222), NWDSGetServerName (page 234), NWDSListPartitions

(page 264)

Functions 269

NWDSLogin

Performs all authentication operations needed to establish a client’s connection to the network and to
the network’s authentication service. Does not support international or extended characters in
passwords.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSLogin (
NWDSContextHandle context,

nflag32 optionsFlag,

pnstr8 objectName,

pnstr8 password,

nuint32 validityPeriod);
Pascal

uses netwin32

Function NWDSLogin
(context : NWDSContextHandle;
optionsFlag : nflag32;
objectName : pnstr8;
password : pnstr8;
validityPeriod : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

optionsFlag

Reserved; pass in zero.

objectName

(IN) Points to the name of the object logging into the network.

270 NDK: Novell eDirectory Core Services

password
(IN) Points to the client’s password.
validityPeriod

Reserved for future use to indicate, in seconds, the period during which authentication will be
valid with other servers. Pass in zero (0).

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values”.

Remarks

NWDSLogin caches authentication information locally to be used by other functions and in
background authentication to additional services.

The password parameter points to the client’s current password in clear text. If there is no password
for the client, its value should point to a zero-length string ("").

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

Until an authenticated connection is established, the client can access only eDirectory information
classified as public.

NOTE: NWDSLoginEx (page 272) supports internation and extended characters in passwords and
is recommended in place of NWDSLogin.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAuthenticate (obsolete 06/03) (page 101), NWDSLogout (page 275), NWDSLoginEx
(page 272)

Functions 271

NWDSLoginEx

Performs all authentication operations needed to establish a client’s connection to the network and to
the network’s authentication service. Supports international and extended characters in passwords.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSLoginEx (
NWDSContextHandle context,

pnstr8 objectName,

nuint32 pwdFormat,

nptr pwd) ;
Pascal

uses netwin32

Function NWDSLoginEx
(context : NWDSContextHandle;
objectName : pnstr8;
pwdFormat : nuint32;
pwd : nptr

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

objectName
(IN) Points to the name of the object logging into the network.
pwdFormat
(IN) Specifies the format of the password data. Select from the following:
PWD_UNICODE_STRING

PWD UTF8_STRING
PWD_RAW_C_STRING

272 NDK: Novell eDirectory Core Services

pwd
(IN) Points to the client’s password.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values”.

Remarks

NWDSLogin caches authentication information locally to be used by other functions and in
background authentication to additional services.

The password parameter points to the client’s current password in clear text. If there is no password
for the client, its value should point to a zero-length string ("").

If an application has a local copy of any password value, the value should be erased as soon as
possible to prevent compromising the security of the password.

Until an authenticated connection is established, the client can access only eDirectory information
classified as public.

NOTE: The PWD_RAW _C_STRING password format allows any arbitrary NULL-terminiated
data to be used as a password. Passwords specified with this format are not interoperable with
unicode and UTF8 passwords.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDS AuthenticateConn (page 103), NWDSAuthenticateConnEx (page 105), NWDSLogout
(page 275)

Functions 273

NWDSLoginAsServer

Allows an NLM application to log in to eDirectory as if it were the NCP Server object.
Local Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: NDS

Syntax

#include <nwdsapi.h>

N GLOBAL LIBRARY (NWCCODE) NWDSLoginAsServer (
NWDSContextHandle context) ;

Parameters

context

(IN) Specifies the NDS context for the request.

Return Values

0x0000 SUCCESSFUL
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to -799).
Remarks

This function is available for the NLM platform only. It logs in the NLM application to eDirectory
as the NCP Server object that the NLM is currently running on.

This function cannot be used on remote servers.

NCP Calls

None

274 NDK: Novell eDirectory Core Services

NWDSLogout

Terminates a client’s connection to the network and invalidates any information cached locally by
NWDSLogin.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSLogout (
NWDSContextHandle context) ;

Pascal
uses netwin32
Function NWDSLogout

(context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

After calling NWDSLogout, new connections cannot be established by calling NWDS Authenticate.
NWDSLogout leaves intact all server attachments and other session connections, authenticated or

Functions 275

unauthenticated, although all rights associated with server attachments and session connections are
lost.

NWDSLogout invalidates the cached authenticator even if the function results in an error.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAuthenticate (obsolete 06/03) (page 101), NWDSLogin (page 270)

276 NDK: Novell eDirectory Core Services

NWDSMapIDToName

Returns the directory name for an object denoted by a connection handle and an object ID.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSMapIDToName

NWDSContextHandle context,

NWCONN_HANDLE connHandle,

nuint32 objectID,

pnstr8 object);
Pascal

uses netwin32

Function NWDSMapIDToName
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
objectID : nuint32;
objectName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle for the target server.

objectID
(IN) Specifies the object ID.

Functions 277

object
(OUT) Points to the object’s distinguished name.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The connHandle parameter contains a server connection handle. This identifies the server from
which the object ID was obtained.

The objectID parameter contains the object ID returned by the specified server.

Since object IDs are unique only in relation to a particular server, the use of object IDs is restricted
to the server from which they originate. An object ID returned by one server is meaningless to
another server. Furthermore, a returned object ID may be valid only for a short period of time.

For these reasons, applications should not store object IDs locally. Rather, they should store the full
name of an eDirectory object. (If an application needs a short-hand representation of an object, it
should manage its own local name-to-ID mapping.)

The object parameter receives the name of the eDirectory object corresponding to the given object
ID. The caller must allocate memory to hold the object’s name. The size of the memory allocated is
(MAX DN _CHARS+1)*sizeof(character size), where character size is 1 for single-byte characters
and 2 for Unicode characters (Unicode characters are always 16 bits). One character is used for
NULL termination.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSMapNameTolD (page 279)

278 NDK: Novell eDirectory Core Services

NWDSMapNameTolD

Returns the object ID for an eDirectory object on a specified server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSMapNameToID (
NWDSContextHandle context,

NWCONN_HANDLE connHandle,

pnstr8 object,

pnuint32 objectID);
Pascal

uses netwin32

Function NWDSMapNameToID
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
objectName : pnstr8;
objectID : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle for the target server.

object
(IN) Points to the eDirectory object name.

Functions 279

objectID
(OUT) Points to the object ID for the specified object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The returned ID can be used as input to older routines which require an objectID (for example,
NWAddTrustee).

Since object IDs are unique only in relation to a particular server, the use of object IDs is restricted
to the server from which they originate. An object ID returned by one server is meaningless to
another server. Furthermore, a returned object ID may be valid only for a short period of time.

For these reasons, applications should not store object IDs locally. Rather, they should store the full
name of an eDirectory object. (If an application needs a short-hand representation of an object, it
should manage its own local name-to-ID mapping.)

The context parameter specifies a location within the eDirectory tree. The NWDSMapNameTolD
function is designed for local name conversion when the context parameter uses default values (see
Section 5.7, “Default Context Key Values,” on page 469). If the context has been set to nondefault
values (such as not dereferencing aliases) with the NWDSSetContext (page 387) function, the
NWDSMapNameTolD function should not be used. Instead, use the NWDSReadObjectDSIInfo
(page 338) and NWDSGetDSIInfo (page 199) functions.

The connHandle parameter contains a server connection handle. It identifies the server from which
the object ID is to be obtained.

The object parameter points to the name of the eDirectory object for which the ID is to be returned.

It is not necessary for the object to be defined in a partition replica stored on the target server. If the
object is not stored on the server, the server generates a temporary reference to the object and returns
the ID for reference to the client.

The objectID parameter points to the object ID of the specified name on the server identified by
conn.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSMapIDToName (page 277)

280 NDK: Novell eDirectory Core Services

NWDSModifyClassDef

Modifies an existing object class definition.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSModifyClassDef (
NWDSContextHandle context,

pnstr8 className,
pBuf T optionalAttrs);
Pascal

uses netwin32

Function NWDSModifyClassDef
(context : NWDSContextHandle;
className : pnstr8;
optionalAttrs : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the object class name whose definition is to be modified.

optionalAttrs

(IN) Points to a request buffer containing the names of attributes to be added to the optional
attribute list for the object class.

Functions 281

Return Values

These are common return values.

0x0000 0000
O0x89E2
0x89E3
0x89E4
0x89E5
0x89FD
0x89FD
Ox89FE
Ox89FF

nonzero value

SUCCESSFUL
TOO_FEW_FRAGMENTS
TOO_MANY_FRAGMENTS
PROTOCOL_VIOLATION
SIZE_LIMIT_EXCEEDED
UNKNOWN_REQUEST
INVALID_PACKET_LENGTH
BAD_PACKET

Failure not related to eDirectory

Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

The only modifications clients can make to existing object class definitions is the addition of
optional attributes. No other characteristic of the object class definition can be changed.

The className parameter identifies the object class to which optional attributes will be added.

The optional Attrs parameter points to a request buffer containing a list of attribute names to be
added to the optional attribute list of the object class definition.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSDefineClass (page 137)

282 NDK: Novell eDirectory Core Services

NWDSModifyDN

Changes the distinguished name of an object or its alias in the eDirectory tree.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSModifyDN (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 newDN,

nbool8 deleteOldRDN) ;
Pascal

uses netwin32

Function NWDSModifyDN
(context : NWDSContextHandle;
objectName : pnstr8;
newDN : pnstr8;
deleteOldRDN : nbool8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request and the name format for the objectName
parameter.

objectName
(IN) Points to the object’s old name.

newDN

(IN) Points to the object’s new name.

Functions 283

deleteOldRDN

(IN) Specifies whether to discard the old RDN. If FALSE, the old RDN is retained as an
additional attribute value. If TRUE, the old RDN is deleted.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The DN is the name of the object that includes the path from the object to the root container in the
eDirectory tree. The object being modified must be a leaf object, but it may be either an object or its
alias.

The objectName parameter points to the object whose DN is to be modified. Aliases in the name
will not be dereferenced.

The newDN parameter specifies the new DN of the object. For example:
"CN=Mary.OU=Graphics.O=WimpleMakers"

If the container objects in the DN are different from the object's current path, the object is moved to
the new container.

If an attribute value in the new DN does not already exist in the object, it is added. If it cannot be
added, an error is returned.

If deleteOIdRDN is TRUE, all old attribute values in the RDN are deleted. If FALSE, old values
remain in the object (but not as a part of the DN). If the naming attribute is single valued, this flag
must be TRUE.

If NWDSModifyDN removes the last attribute value of an attribute while identifying a new attribute
for the DN, the old attribute is deleted.

Aliases are never dereferenced by NWDSModifyDN. The context flag associated with
DCV_DEREF_ALIASES is not relevant to NWDSModifyDN and is ignored.

284 NDK: Novell eDirectory Core Services

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSModifyObject (page 286), NWDSSetContext (page 387), NWDSGetContext (page 191)

Functions 285

NWDSModifyObject

Modifies an object or its alias.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSModifyObject (
NWDSContextHandle context,

pnstr8 objectName,
pnint ptr iterationHandle,
nbool8 more,
pBuf T changes) ;

Pascal

uses netwin32

Function NWDSModifyObject
(context : NWDSContextHandle;
objectName : pnstr8;
iterationHandle : pnint ptr;
more : nboolS8;
changes : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName
(IN) Points to the object to be modified.

iterationHandle

(IN) Points to the iteration number (set initially to -1).

286 NDK: Novell eDirectory Core Services

more

(IN) Specifies whether additional information will be returned:

0 No more information
nonzero More information will be returned

changes

(IN) Points to the set of changes to be applied to the object.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSModifyObject cannot modify an object’s RDN. It can perform only the following:

¢ Add a new attribute

+ Remove an attribute

¢ Add values to an attribute

¢ Remove values from an attribute
+ Replace the values of an attribute

The objectName parameter identifies the object to be modified. The object can be an alias. Any
aliases in the name are not dereferenced.

The changes parameter defines a sequence of modifications, which are applied in the order
specified. The buffer is allocated by calling NWDSAIllocBuf and initialized for
DSV_MODIFY ENTRY by calling NWDSInitBuf. The specified changes are inserted into the
buffer by calling NWDSPutChange and NWDSPutAttrVal, or NWDSPutChangeandVal.

Functions 287

NOTE: If the iterationHandle parameter is set to 0 initially, NWDSModifyObject will ignore the
value and process the request as if -1 was passed.

You can set up multiple buffers to hold changes to an object and have them processed as one
modification. To do this, set the more parameter to a nonzero value. This informs eDirectory that
you have multiple changes for the same object. When you send the last buffer of information for the
object with NWDSModifyObject, set the more parameter to zero. This signals eDirectory to begin
processing all the changes for the object.

If the NDS/eDirectory version does not support this iterative process, ERR_ BUFFER _FULL will be
returned and you will need to send each change as a separate modification with the more parameter
set to zero.

If any of the individual modifications fail, an error is generated and the object is left in the state it
was prior to the operation. Furthermore, the end result of the sequence of modifications may not
violate the eDirectory schema. (However, it is possible, and sometimes necessary, for the individual
object modification changes to appear to do so.) If an attempt is made to modify the object class
attribute, an error is returned.

Aliases are never dereferenced by NWDSModifyObject. The setting of the context flag associated
with DCV_DEREF ALIASES is not relevant to NWDSModifyObject and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSModifyDN (page 283), NWDSRemoveObject (page 359), NWDSModifyRDN (page 289),
NWDSMutateObject (page 295)

288 NDK: Novell eDirectory Core Services

NWDSModifyRDN

Changes the naming attribute of an eDirectory object or its alias in the eDirectory tree.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSModifyRDN (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 newDN,

nbool8 deleteOldRDN) ;
Pascal

uses netwin32

Function NWDSModifyRDN
(context : NWDSContextHandle;
objectName : pnstr8;
newDN : pnstr8;
deleteOldRDN : nbool8
) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object’s current name.

newDN

(IN) Points to the object’s new name.

Functions 289

deleteOldRDN

(IN) Specifies whether to discard the old RDN. If FALSE, the old RDN is retained as an
additional attribute value. If TRUE, the old RDN is deleted.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSModifyRDN does not move an object to a new location in the eDirectory tree.

NWDSModifyRDN changes only the least significant (left-most) name in a leaf object’s
distinguished name. It does not change an object’s more significant names, since changing those
names changes the location of the object in the eDirectory tree. For example, if the object’s name is

CN=Hector.OU=Graphics.O=WimpleMakers

you can change the common name "CN=Hector" to "CN=Duke" since it is a leaf object. However,
you cannot change the "OU=Graphics" to "OU=Marketing" since that would change the location of
the object (Hector) within the eDirectory tree. (To move an object, call NWDSMoveObject or
NWDSModifyDN.)

You cannot change the name of an object that is not a leaf node. For example, in the above case you
cannot change the name of

OU=Graphics.O=WimpleMakers

to

OU=Presentation Graphics.O=WimpleMakers
because Graphics is not a leaf node; it contains the subordinate object named Hector.

The objectName parameter identifies the object whose name is to be modified. Aliases in the name
are not dereferenced.

290 NDK: Novell eDirectory Core Services

The newDN parameter specifies the new name of the object. If an attribute value in the new RDN
does not already exist in the object, it is added. If it cannot be added, an error is returned.

If deleteOIdRDN is TRUE, all old attribute values in the RDN are deleted. If FALSE, old values
remain in the object (but not as a part of the DN). If the naming attribute is single valued, this flag
must be TRUE.

If NWDSModifyRDN removes the last attribute value of an attribute while identifying a new
attribute for the DN, the old attribute is deleted.

Aliases are never dereferenced by NWDSModifyRDN. The context flag associated with
DCV_DEREF ALIASES is not relevant to NWDSModifyRDN and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSModifyDN (page 283), NWDSModifyObject (page 286), NWDSGetContext (page 191),
NWDSSetContext (page 387)

Functions 291

NWDSMoveObject

Moves an eDirectory object from one container to another and/or renames the object.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSMoveObject (
NWDSContextHandle context,

pnstr8 objectName,

pnstr8 destParentDN,

pnstr8 destRDN) ;
Pascal

uses netwin32

Function NWDSMoveObject
(context : NWDSContextHandle;
objectName : pnstr8;
destParentDN : pnstr8;
destRDN : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to be moved.

destParentDN

(IN) Points to the name of the object’s new parent.

292 NDK: Novell eDirectory Core Services

destRDN
(IN) Points to the object’s new RDN.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSMoveObject can move an object only if it is a leaf object (meaning it does not have any
subordinate objects associated with it). However, it may be either an object or its alias.

The new RDN (such as "Hector") may be the same as the original object’s RDN or it may be
different.

If you are going to rename the object but not move it, you should call NWDSModifyRDN instead of
NWDSMoveObject.

The objectName parameter identifies the object whose DN is to be modified. Aliases in the name
will not be dereferenced. Aliases are never dereferenced by NWDSMoveObject. The setting of the
context flag associated with DCV_DEREF ALIASES is not relevant to NWDSMoveObject and is
ignored.

The context parameter determines the name form for the objectName parameter. For partial dot form
names, the DCV_CANONICALIZE NAMES flag determines whether an RDN or a DN should be
entered. For more information, see Section 1.1, “Context Handles,” on page 15.

The destParentDN parameter identifies the name of the parent object the moved object is to be
directly subordinate to. The parent object must already exist in the eDirectory tree.

The destRDN parameter specifies the new RDN of the object being moved.

If Hector is represented in the eDirectory tree as
CN=Hector.OU=Graphics.O=WimpleMakers

Functions 293

and you want to move Hector to Marketing, for objectName pass in
CN=Hector.OU=Graphics.O=WimpleMakers

for destParentDN pass in
OU=Marketing.O=WimpleMakers

and for destRDN pass in
CN=Hector

On successful completion, Hector is moved to the new location in the eDirectory tree, and his
complete NDS name becomes

CN=Hector.OU=Marketing.O=WimpleMakers

NWDSMoveObject is similar in functionality to NWDSModifyDN. Both functions can move an
object to a new container. Both allow you to change the value of the object's naming attribute.
NWDSModifyDN allows you to select whether the old naming attribute value is kept or deleted for
multivalued naming attributes. NWDSMoveObject always deletes an old value.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSModifyDN (page 283), NWDSSetContext (page 387), NWDSGetContext (page 191)

294 NDK: Novell eDirectory Core Services

NWDSMutateObject

Mutates the specified entry from its current object class to the specified class.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSMutateObject (
NWDSContextHandle context,

pnstr8 objectName,
pnstr8 newObjectClass,
nuint32 flags);
Parameters
context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

objectName

(IN) Points to the name of the object whose class is being changed.

newObjectClass
(IN) Points to the object class name.
flags

(IN) Specifies whether the default ACL template of the new object class should be applied to
the object. The DSM_APPLY ACL TEMPLATES flag indicates that the default ACL
template of the new class should be applied to the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

To mutate an object from one class definition to another, the two definitions need to have matching
mandatory attributes and schema rules. For example, a User object can be mutated to an

Functions 295

Organizational Person object because both definitions are effective classes and share the same
mandatory attributes, naming attributes, and containment rules. However, the User class definition
has many more optional attributes defined than the Organizational Person class. If the object you are
mutating has values in some of these attributes, the information will be lost.

If an auxiliary class has been added to the object, the auxiliary class attributes and their values will
mutate to the new object.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSModifyObject (page 286)

296 NDK: Novell eDirectory Core Services

NWDSOpenConnToNDSServer

Locates a connection to a specific server.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSOpenConnToNDSServer (
NWDSContextHandle context,

pnstr8 serverName,
PNWCONN_ HANDLE connHandle) ;
Pascal

uses netwin32

Function NWDSOpenConnToNDSServer
(context : NWDSContextHandle;
serverName : pnstr8;
Var connHandle : NWCONN_ HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

serverName

(IN) Points to the server to receive the request.

connHandle

(OUT) Points to the connection handle.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 297

Remarks

NWDSOpenConnToNDSServer allows you to locate a connection to a specific server. The form of
the name depends upon the settings in the context handle. If the default values have not been
modified, this is a partial dot name relative to the current NDS context. For more information, see
Section 1.1, “Context Handles,” on page 15.

The serverName is resolved using eDirectory and a connection is returned. When finished with the
connection, the application must close the connection using NWCCCloseConn (http://
developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk125.html).

NCP Calls

None

See Also

NWDSAuthenticateConn (page 103), NWDSOpenMonitoredConn (page 299)

298 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk125.html

NWDSOpenMonitoredConn

Opens a connection handle to a monitored connection.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSOpenMonitoredConn (
NWDSContextHandle context,
PNWCONN_ HANDLE connHandle) ;

Pascal

uses netwin32

Function NWDSOpenMonitoredConn
(context : NWDSContextHandle;
Var connHandle : NWCONN_ HANDLE

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

connHandle

(OUT) Points to the connection handle.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

A monitored connection is a connection between a library and eDirectory that is created when the
NWDSLogin function is called. This function must establish a connection to a server that has a read/

Functions 299

write replica of the portion on the eDirectory tree where the object logging in resides. eDirectory
uses the monitored connection to track concurrent logins to the same tree. An object can be
restricted to a specified number of concurrent logins, and the monitored connection allows
eDirectory to track how many are allowed and how many are currently in use.

Most of the newer NetWare client requesters control the monitored connection handle, and
applications have no need to retrieve information about it or manipulate it.

For multiple tree support, the tree name specified in the context handle is used to specify which
monitored connection to retrieve. Call the sForTrees function to return a list of all trees to which you
are currently logged in. Call the NWDSSetContext function to set the context for one of the trees
returned by the NWDSScanConnsForTrees function. Call NWDSOpenMonitoredConn to open a
monitored connection for the same tree. You are responsible for closing the connection handle. If the
tree name is not set in the context, the preferred tree will be used.

For requesters that do not support multiple trees, if the tree name is specified (a NULL string is not
returned to the eDirectory libraries) and if the tree name is different from the preferred tree, an error
will be returned.

NCP Calls

None

See Also

NWDSGetMonitoredConnRef (page 206), NWDSOpenConnToNDSServer (page 297)

300 NDK: Novell eDirectory Core Services

NWDSOpenStream

Begins access to an attribute of type SYN_STREAM.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSOpenStream (

NWDSContextHandle context,

pnstr8 objectName,

pnstr8 attrName,

nflag32 flags,

NWFILE HANDLE N _ FAR *fileHandle) ;
Pascal

uses netwin32

Function NWDSOpenStream
(context : NWDSContextHandle;
objectName : pnstr8;
attrName : pnstr8;
flags : nflag32;
Var fileHandle : NWFILE HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object having the attribute that is to be opened.

attrName

(IN) Points to the attribute name whose value is being read.

Functions 301

flags

(IN) Specifies the mode in which the stream is to be opened:

0x00000001L DS_READ STREAM
0x00000002L DS_WRITE_STREAM

fileHandle
(OUT) Points to the file handle appropriate for the platform from which the API is being called.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

All attributes whose syntax is SYN_STREAM must be accessed by first calling NWDSOpenStream
to retrieve a file handle to be used for accessing the attribute’s value. The returned handle is a file
handle that is appropriate for the platform on which the application is running. This file handle can
be used to access the attribute value through the platform’s standard file I/O functions.

If the attribute has never been initialized, NWDSOpenStream will return

ERR NO SUCH_VALUE. The attribute can be initialized when the object is created (
NWDSAddObject) or afterwards with the NWDSModifyObject function. Set the attribute's value to
NULL.

Close the file handle by calling the platform’s file close function.

You must use the file I/O functions that are appropriate for the platform on which the application is
running. For Windows, call Iread, Iwrite, Iclose, and _llseek.

Attribute values that are of syntax SYN _STREAM are not accessed by NWDSGetAttrVal. When
reading the attributes of an object that has a stream attribute (such as Login Script),
NWDSGetAttrVal returns a zero-length octet string for the value of the stream attribute.

302 NDK: Novell eDirectory Core Services

NOTE: For NLMs, if the handle returned by NWDSOpenStream is to be used by fdopen,
NWDSOpenStream must be called with O_TEXT ORed in with the other values in flags.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

Functions 303

NWDSPartitionReceiveAllUpdates

Changes the state of the partition so all servers holding a replica will send entire partition
information to the specified partition.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPartitionReceiveAllUpdates (
NWDSContextHandle context,

pnstr8 partitionRoot,
pnstr8 serverName) ;
Pascal

uses netwin32

Function NWDSPartitionReceiveAllUpdates
(context : NWDSContextHandle;
partitionRoot : pnstr8;
serverName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name root object name for the partition.

serverName

(IN) Points to the server name where the partition is located.

304 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSPartitionReceiveAllUpdates changes the state of the specified partition to that of a new
partition. This results in all servers holding a replica of this partition sending their entire partition
information, not just changes, to the partition on the target server.

This function replaces a replica on the specified server when that replica's time stamps are incorrect.
For example, an operation to repair a local database may not finish correctly and leave the replica in
an unknown state. Use this function to remedy such a problem.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSPartitionSendAllUpdates (page 306)

Functions 305

NWDSPartitionSendAllUpdates

Tells the specified partition to send full updates to any server holding a replica of the partition.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPartitionSendAllUpdates (
NWDSContextHandle context,

pnstr8 partitionRoot,
pnstr8 serverName) ;
Pascal

uses netwin32

Function NWDSPartitionSendAllUpdates
(context : NWDSContextHandle;
partitionRoot : pnstr8;
serverName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name root object name for the partition.

serverName

(IN) Points to the server name where the partition is located.

306 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Error conditions may prevent data from being propagated to all replicas of a partition. To remedy
this situation, call the NWDSPartitionSendAllUpdates function.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSPartitionReceiveAllUpdates (page 304)

Functions 307

NWDSPutAttrName

Stores an attribute name in a request buffer to be used by an eDirectory function.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutAttrName (
NWDSContextHandle context,

pBuf T buf,
pnstr8 attrName) ;
Pascal

uses netwin32

Function NWDSPutAttrName
(context : NWDSContextHandle;
buf : pBuf T;
attrName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.
buf

(IN) Points to the request buffer in which to store the attribute name.

attrName

(IN) Points to the attribute name to store in the request buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

308 NDK: Novell eDirectory Core Services

Remarks

The maximum size of the attribute name is (MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

This function is used for object operations such as reading, searching, comparing, and adding. It is
also used for schema operations such as reading class definitions and attribute definitions. For more
information on using this function, see the appropriate task in the “Tasks” on page 49 chapter.

NCP Calls

None

See Also

NWDSAddObject (page 87), NWDSCompare (page 128), NWDSPutAttrVal (page 312),
NWDSRead (page 327), NWDSReadAttrDef (page 330), NWDSSearch (page 383)

Functions 309

NWDSPutAttrNameAndVal

Stores an attribute name and value in a request buffer to be used by an eDirectory function.
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutAttrNameAndVal (
NWDSContextHandle context,

pBuf T buf,

pnstr8 attrName,

nuint32 syntaxID,

nptr attrval) ;
Pascal

uses netwin32

Function NWDSPutAttrNameAndVal (
context : NWDSContextHandle;
buf : pBuf T;
attrName : pnstr8;
syntaxID : nuint32;
attrvVal : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.
buf

(IN) Points to the request buffer in which to store the attribute name.

attrName

(IN) Points to the attribute name to store in the request buffer.

310 NDK: Novell eDirectory Core Services

syntaxID
(IN) Specifies the data type of the attribute value.

attrVal
(IN) Points to the attribute value to be stored in the request buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSPutAttrNameAndVal combines the functionality of NWDSPutAttrName and
NWDSPutAttrVal and adds error checking so the buffer is always valid. The NWDSPutAttrName
and NWDSPutAttrVal functions are used by object operations such as adding an object and
comparing attribute values. For these operations, NWDSPutAttrNameAndVal is the preferred
function.

NWDSPutAttrNameAndVal checks the return values of NWDSPutAttrName and
NWDSPutAttrVal. If either function fails because the buffer was too small,
NWDSPutAttrNameAndVal will not modify the buffer. Call NWDSAddObject to add the
eDirectory object.

The maximum size of the attribute name is (MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode characters are
always 16 bits). One character is used for NULL termination.

The buf parameter points to a Buf T, which is allocated by NWDSAllocBuf and initialized by
NWDSInitBuf.

The syntaxID parameter tells NWDSPutAttrNameAndVal what method to use for converting the
attribute value to a machine-transparent form when storing the value in the buffer. Syntax IDs (such
as SYN_ PATH) are enumerated in NWDSDEFS.H. Syntaxes are described in “Attribute Syntax
Definitions” (NDK: Novell eDirectory Schema Reference).

The attrVal parameter points to the attribute value to be stored in the request buffer. The type of data
pointed to by attrVal depends on the indicated attribute syntax. See “Attribute Syntax Definitions” to
determine the data type associated with an attribute.

NCP Calls

None

See Also
NWDSAddObject (page 87), NWDSCompare (page 128), NWDSModifyObject (page 286),

NWDSPutAttrName (page 308), NWDSPutAttrVal (page 312), NWDSRead (page 327),
NWDSReadAttrDef (page 330), NWDSSearch (page 383)

Functions

31

NWDSPutAttrVal

Stores an attribute value in a request buffer to be used by an eDirectory function.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutAttrVal (
NWDSContextHandle context,

pBuf T buf,

nuint32 syntaxID,

nptr attrval) ;
Pascal

uses netwin32

Function NWDSPutAttrVal
(context : NWDSContextHandle;
buf : pBuf T;
syntaxID : nuint32;
attrvVal : nptr

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer being prepared.

syntaxID
(IN) Specifies the data type of the attribute value.

attrval
(IN) Points to the attribute value to be stored in the request buffer.

312 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The buf parameter points to a Buf T, which is allocated by NWDSAllocBuf and initialized by
NWDSInitBuf.

The name of the attribute to which the value belongs is specified previously by calling either
NWDSPutChange or NWDSPutAttrName (depending on the nature of the operation).

The syntaxID parameter tells NWDSPutAttrVal what method to use for converting the attribute
value to a machine-transparent form when storing the value in the buffer. Syntax IDs (such as
SYN_PATH) are enumerated in NWDSDEFS.H. Syntaxes are described in “Attribute Syntax
Definitions” (NDK: Novell eDirectory Schema Reference).

The attrVal parameter points to the attribute value to be stored in the request buffer. The type of data
pointed to by attrVal depends on the indicated attribute syntax. See “Attribute Syntax Definitions” to
determine the data type associated with an attribute.

NCP Calls

None

See Also

NWDSAddODbject (page 87), NWDSAddReplica (page 91), NWDSCompare (page 128),
NWDSModifyObject (page 286), NWDSPutAttrName (page 308), NWDSPutChange (page 314),
NWDSSplitPartition (page 394)

Functions 313

NWDSPutChange

Stores a change record in a request buffer to be used by NWDSModifyObject.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutChange (
NWDSContextHandle context,

pBuf T buf,

nuint32 changeType,

pnstr8 attrName) ;
Pascal

uses netwin32

Function NWDSPutChange
(context : NWDSContextHandle;
buf : pBuf T;
changeType : nuint32;
attrName : pnstr8

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer where the request will be stored.

changeType

(IN) Specifies the modification type to be performed (see Section 5.5, “Change Types for
Modifying Objects,” on page 466).

attrName

(IN) Points to the attribute name to be changed.

314 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

A change record includes the name of the attribute and the type of change to be performed.
If an attempt is made to modify the Object Class attribute, an error is returned.

If the change operation requires an attribute value, this function is followed by the NWDSPutAttrVal
function which supplies the value for the attribute specified in the NWDSPutChange function. The
NWDSPutChangeAndVal function combines this functionality and is the preferred function for
changes that require an attribute value.

NCP Calls

None

See Also

NWDSPutAttrVal (page 312), NWDSModifyObject (page 286)

Functions 315

NWDSPutChangeAndVal

Stores a change record and attribute value in a request buffer to be used by NWDSModifyObject.
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutChangeAndval (
NWDSContextHandle context,

pBuf T buf,

nuint32 changeType,

pnstr8 attrName,

nuint32 syntaxID,

nptr attrval) ;
Pascal

uses netwin32

Function NWDSPutChangeAndVal (
context : NWDSContextHandle;
buf : pBuf T;
changeType : nuint32;
attrName : pnstr8;
syntaxID : nuint32;
attrval : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer where the request will be stored.

316 NDK: Novell eDirectory Core Services

changeType

(IN) Specifies the modification type to be performed (see Section 5.5, “Change Types for
Modifying Objects,” on page 466).

attrName
(IN) Points to the attribute name to be changed.

syntaxID
(IN) Specifies the data type of the attribute value.

attrVal
(IN) Points to the attribute value to be stored in the request buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSPutChangeAndVal combines the functionality of NWDSPutChange and NWDSPutAttrVal
and adds error checking so the buffer is always valid.

NWDSPutChangeAndVal checks the return values of NWDSPutChange and NWDSPutAttrVal. If
either function fails because the buffer was too small, NWDSPutChangeAndVal will not modify the
buffer. Call NWDSModifyObject to modify the eDirectory object.

A change record includes the name of the attribute and the type of change to be performed.
If an attempt is made to modify the Object Class attribute, an error is returned.

A value can be modified by placing a combination of DS REMOVE_VALUE and
DS ADD_VALUE change records in the same request buffer. This allows the operations to be
completed with a single call to NWDSModifyObject.

The buf parameter points to a Buf T, which is allocated by NWDSAllocBuf and initialized by
NWDSInitBuf.

The syntaxID parameter tells NWDSPutAttrVal what method to use for converting the attribute
value to a machine-transparent form when storing the value in the buffer. Syntax IDs (such as
SYN_PATH) are enumerated in NWDSDEFS.H. Syntaxes are described in “Attribute Syntax
Definitions” (NDK: Novell eDirectory Schema Reference).

The attrVal parameter points to the attribute value to be stored in the request buffer. The type of data
pointed to by attrVal depends on the indicated attribute syntax. See “Attribute Syntax Definitions” to
determine the data type associated with an attribute.

NCP Calls

None

Functions 317

See Also

NWDSPutAttrVal (page 312), NWDSPutChange (page 314), NWDSModifyObject (page 286)

318 NDK: Novell eDirectory Core Services

NWDSPutClassltem

Stores a class name or attribute name in a request buffer to be used by an eDirectory schema
function.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutClassItem (
NWDSContextHandle context,

pBuf T buf,
pnstr8 itemName) ;
Pascal

uses netwin32

Function NWDSPutClassItem
(context : NWDSContextHandle;
buf : pBuf T;
itemName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer where the item will be stored.

itemName

(IN) Points to the class name or attribute name to be stored in the request buffer.

Return Values

0x0000 0000 SUCCESSFUL

Functions 319

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Class items are added to one of five class-definition item lists. The first two lists contain the names
of classes; the remaining lists contain the names of attributes.

These class-definition item lists must be stored in the request buffer in the following order:

. Super Class Names

. Containment Class Names

1

2

3. Naming Attribute Names

4. Mandatory Attribute Names
5

. Optional Attribute Names

NWDSPutClassltem is used in conjunction with NWDSBeginClassltem to add items into the list.
NWDSBeginClassltem is called to move to the next class-definition item list.

The first time NWDSBeginClassltem is called, items added with NWDSPutClassltem will be placed
in the Super Class Names list.

The second time NWDSBeginClassltem is called, items added with NWDSPutClassltem will be
placed in the Containment Class Names list.

Items are added to the other lists with subsequent calls to NWDSBeginClassltem and
NWDSPutClassltem.

NWDSPutClassltem adds one item each time it is called. To store multiple items in a list, call
NWDSPutClassltem for each item.

See “Creating a Class Definition” on page 67 for the complete steps to fill out a buffer to be used for
defining a new class.

NCP Calls

None

See Also

NWDSReadClassDef (page 333), NWDSPutClassName (page 321), NWDSPutSyntaxName
(page 325)

320 NDK: Novell eDirectory Core Services

NWDSPutClassName

Stores a class name in a request buffer to be used by an eDirectory function.

NetWare Server: 4.x, 5.X, 6.x

Platform: Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutClassName
NWDSContextHandle context,

pBuf T buf,
pnstr8 itemName) ;
Pascal

uses netwin32

Function NWDSPutClassName
(context : NWDSContextHandle;
buf : pBuf T;
itemName : pnstr8;

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer being prepared.

itemName

(IN) Points to the class name to be stored in the request buffer.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 321

Remarks

NWDSPutClassName is a macro that calls NWDSPutClassltem. The NWDSPutClassName
function makes source code more descriptive by having the function name identify what type of
class item is being stored in the request buffer.

Class items are added to one of five class-definition item lists. These class-definition item lists are
stored in the buffer in the following order:

Super Class Names

Containment Class Names

Naming Attribute Names

Bl e

Mandatory Attribute Names
5. Optional Attribute Names

The first two lists contain object class names; the remaining lists contain attribute names.
NWDSPutClassName is used to place class names into the Super Class Names and the Containment
Class Names lists. NWDSPutClassItem is used for the other lists.

NCP Calls

None

See Also

NWDSReadClassDef (page 333), NWDSPutClassltem (page 319)

322 NDK: Novell eDirectory Core Services

NWDSPutFilter

Prepares a search filter expression tree in a request buffer so it can be used in a call to NWDSSearch.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsfilt.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutFilter (
NWDSContextHandle context,

pBuf T buf,
pFilter Cursor T cur,
void (N_FAR N _CDECL *freeVal) (
nuint32 syntax,
nptr val))
Pascal

uses netwin32

Function NWDSPutFilter
(context : NWDSContextHandle;
buf : pBuf T;
cur : pFilter Cursor T;
freeVal : FreeValProc

) : NWDSCCODE;

Parameters
context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer being prepared.

cur

(IN) Points to a cursor to the filter expression tree being stored in the buffer.

freeVal

(IN) Points to the function used to free the attribute values.

Functions 323

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The buf parameter points to a Buf T, which is allocated by NWDSAllocBuf and initialized for a
DSV_SEARCH_FILTER operation by NWDSInitBuf.

NWDSPutFilter frees the area allocated to the expression tree, including the area referenced by cur.
If the application needs to retain the expression tree, the application should save the tree in some
form before calling NWDSPutFilter.

NOTE: NWDSPutFilter always frees the memory allocated to the expression tree, even if
NWDSPutFilter returns an error. Do not call NWDSFreeFilter to free the filter if NWDSPutFilter
returns an error. Doing so will corrupt memory since the filter will already have been freed.

The freeVal parameter points to a function freeing the attribute values. The function is passed the
syntax attribute ID and the address of the area to free. The freeVal parameter can be NULL, in which
case no attribute values are freed.

NCP Calls

None

See Also

NWDSAddFilterToken (page 84), NWDSAllocFilter (page 97), NWDSDelFilterToken (page 140),
NWDSFreeFilter (page 162)

324 NDK: Novell eDirectory Core Services

NWDSPutSyntaxName

Stores a syntax name in a request buffer to be used by a eDirectory function.

NetWare Server: 4.x, 5.X, 6.x

Platform: Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsbuft.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSPutSyntaxName
NWDSContextHandle context,

pBuf T buf,
pnstr8 itemName) ;
Pascal

uses netwin32

Function NWDSPutSyntaxName
(context : NWDSContextHandle;
buf : pBuf T;
itemName : pnstr8;

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.

buf
(IN) Points to the request buffer being prepared.

itemName

(IN) Points to the syntax name to be stored in the request buffer.

Return Values

(

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 325

Remarks

NWDSPutSyntaxName is a macro that calls NWDSPutClassItem.

The buf parameter points to Buf T, which is allocated by NWDSAIllocBuf and initialized by
NWDSInitBuf.

NCP Calls

None

See Also

NWDSReadClassDef (page 333), NWDSPutClassltem (page 319)

326 NDK: Novell eDirectory Core Services

NWDSRead

Reads values from one or more of the specified object’s attributes.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRead (
NWDSContextHandle context,

pnstr8 object,

nuint32 infoType,

nbool8 allAttrs,

pBuf T attrNames,

pnint ptr iterationHandle,

pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSRead
(context : NWDSContextHandle;
object : pnstr8;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;
iterationHandle : pnint ptr;
objectInfo : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Functions 327

object
(IN) Points to the name of the object whose information is to be read.

infoType

(IN) Specifies the type of information desired (see Section 5.16, “Information Types for Search
and Read,” on page 476).

allAttrs
(IN) Specifies the scope of the request:

TRUE Information concerning all attributes is requested
FALSE Information concerning only attributes named in the attrNames parameter is requested

attrNames

(IN) Points to a buffer containing the names of the object’s attributes for which information is
to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of NWDSRead.

objectInfo

(OUT) Points to a buffer receiving the requested attribute names and/or values.

Return Values

0x0000 0000 SUCCESSFUL
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The infoType, allAttrs, and attrNames parameters indicate what attribute information is requested.

If NWDSRead is called using infoTypes DS_VALUE INFO (3) or DS_ABBREVIATED VALUE
(4), eDirectory returns the attribute value flags and modification timestamp. If the attribute value has
been deleted, but not synchronized, eDirectory can return a value flag of DS NOT PRESENT
(value not present) and no data. In this case, the attribute value length is zero.
NWDSComputeAttrValSize returns the correct size of 0, and the application should not call
NWDSGetAttrVal to retrieve the data because there is no data to retrieve.

If allAttrs is TRUE, information about all attributes associated with the object is requested and
attrNames is ignored (in which case, pass in a NULL for attrNames). If allAttrs is FALSE, only the
attributes specified by the request buffer pointed to by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is returned, and infoType is
not meaningful. In this case, the return value of NWDSRead can determine whether the specified
object exists (verifying the object’s distinguished name), or whether access to the object is allowed.

The request buffer pointed to by attrNames explicitly specifies the attribute to be returned. Initialize
the buffer with a value of DSV_READ. For more information on setting up this buffer, see “Reading
Attributes of eDirectory Objects” on page 62.

328 NDK: Novell eDirectory Core Services

The iterationHandle parameter controls retrieval of list results larger than the result buffer pointed to
by attrNames.

Before the initial call to NWDSRead, set the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSRead returns from its initial call, the
location pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle is
not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent calls to NWDSRead to
obtain further portions of the results. When the results are completely retrieved, the contents of the
iteration handle will be set to NO_ MORE_ITERATIONS.

NOTE: On large networks, iterative processes, such as NWDSRead, might take a long time to
complete. For example, listing all of the User objects on a corporate network might be too time
consuming. Developers should use NWDSCloselteration to allow users of their applications to abort
an iterative process that is taking too long to complete.

To end the read operation before complete results have been retrieved, call NWDSCloselteration
with a value of DSV_READ to free memory and states associated with the read operation.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSReadObjectInfo (page 340)

Functions 329

NWDSReadAttrDef

Retrieves information about eDirectory schema attribute definitions.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadAttrDef (
NWDSContextHandle context,

nuint32 infoType,

nbool8 allAttrs,

pBuf T attrNames,

pnint ptr iterationHandle,

pBuf T attrDefs) ;
Pascal

uses netwin32

Function NWDSReadAttrDef
(context : NWDSContextHandle;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;
iterationHandle : pnint ptr;
attrDefs : pBuf T

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.
infoType

(IN) Specifies the information type desired (see Section 5.14, “Information Types for Attribute
Definitions,” on page 475).

330 NDK: Novell eDirectory Core Services

allAttrs

(IN) Specifies the scope of the request: TRUE=information concerning all attributes is
requested; FALSE=only attributes named in attrNames are requested.

attrNames

(IN) Points to a request buffer containing the attribute names whose definitions are to be
returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSReadAttrDef.

attrDefs

(OUT) Points to a result buffer that receives the requested attribute names and/or definitions.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The infoType, allAttrs, and attrNames parameters indicate what eDirectory Schema attribute
information is requested.

If allAttrs is TRUE, information about all attributes in the eDirectory schema is requested. In this
case, attrNames is ignored and can be set to NULL. If allAttrs is FALSE, only the attributes
specified by attrNames are requested.

The iterationHandle parameter controls retrieval of results that are larger than the result buffer
pointed to by attrDefs.

Before the initial call to NWDSReadAttrDef, set the contents of the iteration handle pointed to by
iterationHandle to NO_MORE_ITERATIONS.

Functions 331

If the result buffer holds the complete results when NWDSReadAttrDef returns from its initial call,
the location pointed to by iterationHandle is set to NO_ MORE ITERATIONS. If the iteration
handle is not set to NO_MORE ITERATIONS, use the iteration handle for subsequent calls to
NWDSReadAttrDef in order to obtain further portions of the results. When the results are
completely retrieved, the contents of the iteration handle will be set to NO_MORE _ITERATIONS.

NOTE: To end the Read operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_READ ATTR DEEF to free memory and states
associated with NWDSReadAttrDef.

The level of granularity for partial results is an individual attribute definition.

The attrDefs parameter points to a request buffer containing the requested attribute information.
This buffer contains either a list of attribute names, or a sequence of attribute names and definitions
depending upon the value of infoType mentioned above.

For step-by-step instructions, see “Reading an Attribute Definition” on page 72.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSReadClassDef (page 333)

332 NDK: Novell eDirectory Core Services

NWDSReadClassDef

Retrieves information about eDirectory schema object class definitions.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadClassDef (
NWDSContextHandle context,

nuint32 infoType,

nbool8 allClasses,

pBuf T classNames,

pnint ptr iterationHandle,

pBuf T classDefs);
Pascal

uses netwin32

Function NWDSReadClassDef
(context : NWDSContextHandle;
infoType : nuint32;
allClasses : nboolS8;
classNames : pBuf T;
iterationHandle : pnint ptr;
classDefs : pBuf T

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.
infoType

(IN) Specifies the information type desired (see Section 5.15, “Information Types for Class
Definitions,” on page 476).

Functions 333

allClasses

(IN) Specifies whether information for every object class should be returned: TRUE=all
classes; FALSE=only the classes specified in classNames are requested.

classNames

(IN) Points to a request buffer containing the names of the object classes whose information is
to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSReadClassDef.

classDefs

(OUT) Points to a result buffer containing the requested information.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
O0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The infoType, allClasses, and classNames parameter indicate the type of object class information
requested.

If allClasses is TRUE, information about all classes in the eDirectory schema is requested and
classNames is ignored and can be set to NULL. If allClasses is FALSE, only the class definitions
specified in the request buffer pointed to by classNames are requested.

The iterationHandle parameter controls retrieval of results larger than the result buffer pointed to by
classDefs.

Before the initial call to NWDSReadClassDef, set the contents of the iteration handle pointed to by
iterationHandle to NO_MORE_ITERATIONS.

334 NDK: Novell eDirectory Core Services

If the result buffer holds the complete results when NWDSReadClassDef returns from its initial call,
the location pointed by iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle
is not set to NO_MORE _ITERATIONS, use the iteration handle for subsequent calls to
NWDSReadClassDef to obtain further portions of the results. When the results are completely
retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

NOTE: To end the Read operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_READ CLASS DEF to free memory and states
associated with NWDSReadClassDef.

The level of granularity for partial results is an individual class definition. If the buffer is not large
enough to hold an entire class definition, ERR_INSUFFICIENT BUFFER will be returned.

The classDefs parameter points to a result buffer containing the requested information. This buffer
contains either a list of class names, or a sequence of class names and definitions, or a sequence of
class definitions. The type of information returned depends on infoType.

For step by step instructions, see “Reading a Class Definition” on page 70.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSReadAttrDef (page 330)

Functions 335

NWDSReadNDSInfo

Reads NDSPING information into a buffer for retrieval.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadNDSInfo (
NWCONN_HANDLE connHandle,

nflag32 requestedFields,
pBuf T resultBuffer);
Pascal

uses netwin32

Function NWDSReadNDSInfo
(connHandle : NWCONN HANDLE;
requestedFields : nflag32;
resultBuffer : pBuf T;

) : NWDSCCODE;

Parameters

connHandle

(IN) Specifies a connection handle to the eDirectory server.

requestedFields

(IN) Specifies the DSPING flags that control the information returned (see Section 5.19,
“eDirectory Ping Flags,” on page 479).

resultBuffer

(OUT) Points to the buffer receiving the requested data.

336 NDK: Novell eDirectory Core Services

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWDSReadNDSInfo places fields of information designated by Section 5.19, “eDirectory Ping
Flags,” on page 479 into a reply buffer. These fields can then be retrieved one at a time with
NWDSGetNDSInfo (page 208).

For instructions on how to use NWDSReadNDSInfo, see “Accessing eDirectory Ping Information”
on page 54.

NCP Calls

0x2222 104 01 Ping for eDirectory NCP
0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSGetNDSInfo (page 208), NWGetNLMInfo (http://developer.novell.com/ndk/doc/clib/
index.html?page=/ndk/doc/clib/srvr_enu/data/sdk354.html)

Functions 337

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/srvr_enu/data/sdk354.html

NWDSReadObjectDSlInfo

Returns the DSI object information not stored in the attributes of an object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadObjectDSIInfo (
NWDSContextHandle context,

pnstr8 object,

nuint32 infolLength,

nptr objectInfo);
Pascal

uses netwin32

Function NWDSReadObjectDSIInfo (
context : NWDSContextHandle;
object : pnstr8;
infolength : nuint32;
objectInfo : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object for which information is to be returned.

infoLength
(IN) Specifies the size of the objectInfo buffer.

338 NDK: Novell eDirectory Core Services

objectInfo

(OUT) Points to the non-attribute information about the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

Object information can be useful to applications browsing the eDirectory tree.

If aliases are to be dereferenced (the context flag associated with DCV_DEREF ALIASES is set)
and object passes an alias name for the object, the name pointed to by infoLength is the dereferenced
name of the object.

The caller must allocate sufficient memory to contain the data elements specified by the
Section 5.11, “DCK_DSI_FLAGS Values,” on page 472. The default settings return the object's
entry flags, subordinate count, modification time, base class, RDN, and DN.

To read the information in the objectInfo buffer, use the NWDSGetDSIInfo function.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSGetDSIInfo (page 199), NWDSGetObjectNameAndInfo (page 217), NWDSRead
(page 327), NWDSReadObjectInfo (page 340)

Functions 339

NWDSReadObjectinfo

Returns object information not stored in the attributes of the object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadObjectInfo (
NWDSContextHandle context,

pnstr8 object,

pnstr8 distinguishedName,

pObject Info T objectInfo);
Pascal

uses netwin32

Function NWDSReadObjectInfo
(context : NWDSContextHandle;
objectName : pnstr8;
distinguishedName : pnstr8;
objectInfo : pObject Info T

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.
object
(IN) Points to the name of the object for which information is to be returned.

distinguishedName

(OUT) Points to the object name, which may be distinguished or relative depending upon the
context flags.

340 NDK: Novell eDirectory Core Services

objectInfo

(OUT) Points to the non-attribute information about the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

This function returns the name of the base class used to create the object, entry flags, modification
time, and the number of objects that are subordinate to this object. This information can be useful to
applications browsing the eDirectory tree. The flags set on the context handle influence the
information returned. For more information, see Section 5.6, “Context Keys and Flags,” on

page 467.

If aliases are to be dereferenced (the context flag associated with DSV_DEREF ALIASES is set)
and object passes an alias name for the object, the name pointed to by distinguishedName is the
dereferenced name of the object.

The caller must allocate memory to hold the distinguished name of the object. The size of the
memory is (MAX DN _ CHARS+1)*sizeof(character size), where character size is 1 for single-byte
characters, and 2 for Unicode characters (Unicode characters are always 16 bits). One character is
used for NULL termination.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRead (page 327)

Functions 341

NWDSReadReferences

Returns information about the references of the specified object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadReferences (
NWDSContextHandle context,

pnstr8 serverName,

pnstr8 objectName,

nuint32 infoType,

nbool8 allAttrs,

pBuf T attrNames,

uint32 timeFilter,

pnint ptr iterationHandle,

pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSReadReferences
(context : NWDSContextHandle;
serverName : pnstr8;
objectName : pnstr8;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;
timeFilter : nuint32;
iterationHandle : pnint ptr;
objectInfo : pBuf T

) : NWDSCCODE;

342 NDK: Novell eDirectory Core Services

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Points to the server name to read from.

objectName

(IN) Points to the object name whose reference information is to be read.

infoType

(IN) Specifies the type of information to be returned (see Section 5.16, “Information Types for
Search and Read,” on page 476).

allAttrs
(IN) Specifies the scope of the request.

attrNames

(IN) Points to a request buffer containing the names of attributes whose information is to be
returned. This can be NULL.

timeFilter

(IN) Specifies the attribute modification time to be used as a filter. This parameter must be
specified and cannot be NULL.

iterationHandle

(IN/OUT) Points to information necessary to resume subsequent calls to
NWDSReadReferences. This should be initially set to NO_MORE_ITERATIONS.

objectInfo

(OUT) Points to a result buffer containing the requested attribute names or attribute names and
values. This parameter can be NULL.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

OxFEOD UNI_NO_OFFSET_DEFAULT
OxFEOF UNI_HANDLE_MISMATCH
OxFE10 UNI_HANDLE_BAD

OxFEBS ERR_NULL_POINTER

OxFEBB ERR_INVALID_ATTR_SYNTAX
OxFEBD ERR_BUFFER_ZERO_LENGTH
OxFEBE ERR_INVALID_HANDLE

Functions 343

OxFEBF ERR_UNABLE_TO_MATCH

OxFED1 ERR_BAD_CONTEXT

OxFED3 ERR_NOT_ENOUGH_MEMORY

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The NWDSReadReference function returns information about objects that are referencing a
specified object on a specified server. The objectName parameter specifies the object, for example
object X, that exists on the server. The function returns information about the objects, for example
objects Y and Z, that are listed in the Reference attribute of object X. Information about each object
listed in the Reference attribute is returned in the objectInfo buffer.

This function reads the Reference attribute of the object. Entires are added to this attribute when the
object is referenced in an ACL of another object or the object is added to a list attribute. For
example, User objects can belong to Group objects which have a Member attribute. When a User is
added to just an attribute, the Group is added to the User's Reference attribute.

The infoType, allAttrs, and attrNames parameters indicate what attribute information to return
concerning the reference entries.

If allAttrs is TRUE, information about all attributes associated with the object is requested and
attrNames is ignored (in which case, assign a NULL pointer to attrNames). If allAttrs is FALSE,
only the attributes specified by the request buffer pointed to by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is returned, and infoType is
not meaningful. In this case, the return value of NWDSReadReferences can determine whether the
specified object exists (verifying the object's distinguished name), or whether access to the object is
allowed.

The request buffer pointed to by attrNames explicitly specifies the attributes to be returned. For
more information, see “Preparing eDirectory Output Buffers” on page 53.

The information in the result buffer depends on infoType. To read the information in the buffer, first
call NWDSGetObjectCount. For more information, see “Retrieving Results from eDirectory Output
Buffers” on page 53.

The iterationHandle parameter controls retrieval of read results larger than the result buffer pointed
to by objectInfo. Before the initial call to NWDSReadReferences, set the iterationHandle parameter
to NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSReadReferences returns from its initial
call, the location pointed to by iterationHandle is set to NO_MORE ITERATIONS. If the iteration
handle is not set to NO_MORE_ITERATIONS, use the iteration handle for subsequent calls to
NWDSReadReferences to obtain further portions of the results. When the results are completely
retrieved, iterationHandle will be set to NO_MORE_ITERATIONS.

To end the read operation before the complete results have been retrieved, call NWDSCloselteration
with a value of DSV_READ REFERENCES to free memory and states associated with the read
operation.

344 NDK: Novell eDirectory Core Services

The level of granularity for partial results is an individual value of an attribute. If an attribute is
multivalued and its values are split across two or more NWDSReadReferences results, the attribute
name is repeated in each result.

The results of NWDSReadReferences are not ordered and might not be returned in alphabetical
order.

If infoType is set to return both attribute names and values, you cannot remove only the names from
the result buffer. You must remove the information in the correct order of the attribute name first and
then all of the values associated with the attribute. The next attribute name and its values can then be
removed. Otherwise, NWDSGetAttrName will return erroneous information.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSReadObjectInfo (page 340)

Functions 345

NWDSReadSyntaxDef

Returns the syntax definition for a given eDirectory syntax identifier.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadSyntaxDef (
NWDSContextHandle context,

nuint32 syntaxID,
pSyntax Info T syntaxDef) ;
Pascal

uses netwin32

Function NWDSReadSyntaxDef
(context : NWDSContextHandle;
syntaxID : nuint32;
syntaxDef : pSyntax Info T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

syntaxID

(IN) Specifies the syntax identifier whose definition is to be returned (see Section 5.26,
“Syntax IDs,” on page 487).

syntaxDef

(OUT) Points to a Syntax_Info_T structure, which receives the syntax definition.

Return Values

0x0000 0000 SUCCESSFUL

346 NDK: Novell eDirectory Core Services

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The syntaxID parameter is an identifier (not a string) of a syntax. These identifiers (such as
SYN_TEL NUMBER) are enumerated in the nwdsdefs.h file.

This is a local function. Syntaxes are well known.

NCP Calls

None

Functions 347

NWDSReadSyntaxes

Enumerates syntax definitions or retrieves specific eDirectory schema syntax definitions.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReadSyntaxes (
NWDSContextHandle context,

nuint32 infoType,
nbool8 allSyntaxes,
pBuf T syntaxNames,
pnint ptr iterationHandle,
pBuf T syntaxDefs) ;
Pascal

uses netwin32

Function NWDSReadSyntaxes
(context : NWDSContextHandle;
infoType : nuint32;
allSyntaxes : nboolS8;
syntaxNames : pBuf T;
iterationHandle : pnint ptr;
syntaxDefs : pBuf T

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoType

(IN) Specifies the type of information desired: DS SYNTAX NAMES equals names only, and
DS SYNTAX DEFS equals names, IDs, and matching rules.

allSyntaxes

(IN) Specifies the scope of the request: TRUE=all syntaxes and FALSE= selected syntaxes
specified by syntaxNames.

348 NDK: Novell eDirectory Core Services

syntaxNames
(IN) Points to a request buffer containing the names of the syntaxes for which information is to
be returned.

iterationHandle
(IN/OUT) Points to information needed to resume subsequent iterations of
NWDSReadSyntaxes.

syntaxDefs

(OUT) Points to a result buffer containing the requested syntax names and/or definitions.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

The infoType, allSyntaxes, nd syntaxNames parameters indicate what syntax information is
requested.

The infoType parameter uses two flags which specify what information is returned.

Flag Description
DS_SYNTAX_NAMES Returns only syntax names
DS_SYNTAX_DEFS Returns syntax names with a Syntax_Info_T (page 457) structure

that contains the syntax ID and the syntax matching rules

If allSyntaxes is TRUE, information is returned for all syntaxes defined for the eDirectory tree, and
syntaxNames is ignored. If allSyntaxes is FALSE, only the syntaxes specified by syntaxNames are
requested.

If allSyntaxes is FALSE and syntaxNames is NULL, no syntax information is returned, and
infoType is not meaningful.

The syntaxNames parameter is a request buffer containing the names of the specific syntaxes whose
information is to be returned. It is used to explicitly specify the syntaxes to be returned.

The iterationHandle parameter controls the retrieval of results that are larger than the result buffer
pointed to by syntaxDefs.

Before the initial call to NWDSReadSyntaxes, set the contents of the iteration handle pointed to by
iterationHandle to NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSReadSyntaxes returns from its initial call,
the location pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the iteration
handle is not set to NO_MORE ITERATIONS, use the iteration handle for subsequent calls to
NWDSReadSyntaxes to obtain further portions of the results. When the results are completely
retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

Functions

349

NOTE: To end the Read operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_READ SYNTAXES to free memory and states
associated with NWDSReadSyntaxes.

The level of granularity for partial results is an individual syntax definition.

The syntaxDefs parameter points to a result buffer receiving the requested information. This buffer
contains either a list of syntax names or a sequence of syntax name and definitions, depending upon
the value of infoType.

Read results from the buffer by calling NWDSGetSyntaxCount and NWDSGetSyntaxDef.

The results of NWDSReadSyntaxes are not ordered, meaning the syntaxes might not be stored in the
result buffer in alphabetical order.

For more information, see “Retrieving Syntax Names and Definitions” on page 73.

NCP Calls

None

350 NDK: Novell eDirectory Core Services

NWDSReloadDS

Requests a specified server to unload and then load the DS NLM.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSReloadDS (
NWDSContextHandle context,
pnstr8 serverName) ;

Pascal

uses netwin32

Function NWDSReloadDS
(context : NWDSContextHandle;
serverName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Points to the server to send the request to.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWDSReloadDS requests the server to reload the DS NLM.

Functions 351

NCP Calls

None

352 NDK: Novell eDirectory Core Services

NWDSRemoveAllTypes

Removes all attribute types from a distinguished name.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsname.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemoveAllTypes (
NWDSContextHandle context,

pnstr8 name,
pnstr8 typelessName) ;
Pascal

uses netwin32

Function NWDSRemoveAllTypes
(context : NWDSContextHandle;
name : pnstr8;
typelessName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

name

(IN) Points to the object name.

typelessName
(OUT) Points to the object name with the attribute types removed.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 353

Remarks

NWDSRemoveAllTypes takes the typed name
CN=Bob.0OU=Marketing.O=WimpleMakers

and returns the untyped name
Bob.Marketing.WimpleMakers

Removal of types is not done relative to the current name context. Therefore, it is not guaranteed
that NWDSCanonicalizeName can restore the correct types. For more information, see the
DCV_TYPELESS NAMES key in “DCK_FLAGS Key” on page 18.

The caller must allocate the memory pointed to by typelessName. The size of the memory is

(MAX DN_CHARS+1)*sizeof(character size), where character size is 1 for single-byte characters,
and 2 for Unicode characters (Unicode characters are always 16 bits). One character is used for
NULL termination.

If the name is already untyped, the same untyped name will be returned.

NCP Calls

None

354 NDK: Novell eDirectory Core Services

NWDSRemoveAttrDef

Deletes an attribute definition from the eDirectory schema.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N_EXTERN LIBRARY (NWDSCCODE) NWDSRemoveAttrDef (
NWDSContextHandle context,
pnstr8 attrName) ;

Pascal

uses netwin32

Function NWDSRemoveAttrDef
(context : NWDSContextHandle;
attrName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the name of the attribute definition to be removed.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL
0x8996 SERVER_OUT_OF_MEMORY

Functions 355

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

An attribute definition can be deleted only if it is not in use in any object class definition, and only if
the attribute definition is not flagged as used by the name server.

The attrName parameter identifies the attribute definition to be deleted from the schema.

NOTE: Clients cannot subtract from the standard set of attribute definitions defined by the
eDirectory operational schema (these attributes are flagged nonremovable). Clients can, however,
add and remove non-standard definitions (if not in use).

If an attribute has been added to an object class, the object class must be deleted before the attribute
definition can be deleted.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRemoveClassDef (page 357)

356 NDK: Novell eDirectory Core Services

NWDSRemoveClassDef

Deletes a class definition from the eDirectory schema.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemoveClassDef

NWDSContextHandle context,
pnstr8 className) ;

Pascal

uses netwin32

Function NWDSRemoveClassDef
(context : NWDSContextHandle;

className : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the class name to be removed.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Functions 357

Remarks

Calling NWDSRemoveClassDef is not allowed if the class is referenced by any other class, or if
objects of this class exist in the eDirectory database.

The className parameter identifies the class whose definition is to be removed.

NOTE: Clients cannot subtract from the standard set of class definitions defined by the eDirectory
operational schema (these are flagged nonremovable). Clients can, however, add and remove non-
standard definitions (if not in use).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRemoveAttrDef (page 355)

358 NDK: Novell eDirectory Core Services

NWDSRemoveObject

Removes a leaf object (either an object or an alias) from the eDirectory tree.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemoveObject (
NWDSContextHandle context,
pnstr8 object);

Pascal

uses netwin32

Function NWDSRemoveObject
(context : NWDSContextHandle;
object : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object to be removed.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL
0x8996 SERVER_OUT_OF_MEMORY

Functions 359

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

Aliases are never dereferenced by NWDSRemoveObject. The setting of the context flag associated
with DCV_DEREF_ALIASES is not relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

360 NDK: Novell eDirectory Core Services

NWDSRemovePartition

Removes an existing partition from eDirectory by deleting its master replica.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemovePartition (
NWDSContextHandle context,
pnstr8 partitionRoot) ;

Pascal

uses netwin32

Function NWDSRemovePartition
(context : NWDSContextHandle;
partitionRoot : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name of the root object of the partition to be removed.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL
0x8996 SERVER_OUT_OF_MEMORY

Functions 361

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

The partition must be completely empty (except for the root object) or the deletion will fail. In
addition, no other replicas can exist.

Remove other replicas of the partition beforehand by calling NWDSRemoveReplica.

The partitionRoot parameter points to the name of the root object in the partition. Since
NWDSRemovePartition must be performed on the partition’s master replica, it is assumed the
operation will be performed on the server storing this replica.

Aliases are never dereferenced by NWDSRemovePartition. The setting of the NDS context flag
associated with DCV_DEREF ALIASES is not relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRemoveReplica (page 363)

362 NDK: Novell eDirectory Core Services

NWDSRemoveReplica

Removes a replica from the replica set of an eDirectory partition.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemoveReplica (
NWDSContextHandle context,

pnstr8 server,
pnstr8 partitionRoot) ;
Pascal

uses netwin32

Function NWDSRemoveReplica
(context : NWDSContextHandle;
server : pnstr8;
partitionRoot : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name where the replica is stored.

partitionRoot

(IN) Points to the name of the root object of the eDirectory partition whose replica is being
deleted.

Functions 363

Return Values

These are common return values.

0x0000 0000
0x8996
0x89E2
0x89E3
0x89E4
0x89ES
0x89FD
0x89FD
Ox89FF
0x89FE

nonzero value

SUCCESSFUL
SERVER_OUT_OF_MEMORY
TOO_FEW_FRAGMENTS
TOO_MANY_FRAGMENTS
PROTOCOL_VIOLATION
SIZE_LIMIT_EXCEEDED
UNKNOWN_REQUEST
INVALID_PACKET_LENGTH
Failure not related to eDirectory
BAD_PACKET

Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSRemoveReplica removes any replica except the master replica of a partition.

Remove the master replica by calling NWDSRemovePartition after all other replicas have been
removed by calling NWDSRemoveReplica.

Aliases are never dereferenced by NWDSRemoveReplica. The setting of the NDS context flag
associated with DCV_DEREF ALIASES is not relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSRemovePartition (page 361)

364 NDK: Novell eDirectory Core Services

NWDSRemSecurityEquiv

Removes a security equivalence from the specified object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRemSecurityEquiv (
NWDSContextHandle context,

pnstr8 equalFrom,
pnstr8 equalTo) ;
Pascal

uses netwin32

Function NWDSRemSecurityEquiv
(context : NWDSContextHandle;
equalFrom : pnstr8;
equalTo : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

equalFrom

(IN) Points to the name of the object whose Security Equivalence attribute is to be modified.

equalTo

(IN) Points to the object name to be removed from the Security Equivalence attribute of the
object specified by equalFrom.

Functions 365

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

If NWDSRemSecurityEquiv is successful, it will remove the name of the object specified by
equalTo from the Security Equals attribute of the object specified by equalFrom. (Security Equals is
a multivalued attribute.)

If the caller of the function does not have sufficient rights to the object specified by equalFrom,
NWDSAddSecurityEquiv will return ERR._ NO_ACCESS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddSecurityEquiv (page 93)

366 NDK: Novell eDirectory Core Services

NWDSRepairTimeStamps

Sets the time stamps for all of a partition’s objects and their attributes to the current time on the

NetWare server where the master replica is located.
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSRepairTimeStamps
NWDSContextHandle context,
pnstr8 partitionRoot) ;

Pascal

uses netwin32

Function NWDSRepairTimeStamps
(context : NWDSContextHandle;
partitionRoot : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name of the partition’s root object.

Return Values

These are common return values.

(

0x0000 0000 SUCCESSFUL
0x8996 SERVER_OUT_OF_MEMORY

Functions 367

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSRepairTimeStamps sets the time stamps on all of the objects and their attributes, even if valid
time stamps exist. It will replace information such as the creation dates of the attributes.

After NWDSRepairTimeStamps is called, eDirectory will synchronize all replicas to match the
information in the master replica.

IMPORTANT: Because of the wide scope of changes made by NWDSRepairTimeStamps, it
should be used only to recover from a catastrophic failure.

One concern with using NWDSRepairTimeStamps is that it can result in the loss of information. For
example, any changes that have been made on replicas other than the master replica will be lost if
they have not been synchronized with the master replica before NWDSRepairTimeStamps is called.

Another concern is with applications that use eDirectory Event Notification Services. After
NWDSRepairTimeStamps is called, eDirectory will produce event notifications for every object and
attribute on the master replica. It will also provide the same notification each time one of the other
replicas is synchronized with the master replica.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

368 NDK: Novell eDirectory Core Services

NWDSReplaceAttrNameAbbrev

Replaces the abbreviated attribute name with its unabbreviated name.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReplaceAttrNameAbbrev (
NWDSContextHandle context,

pnstr8 inStr,
pnstr8 outStr) ;
Pascal

uses netwin32

Function NWDSReplaceAttrNameAbbrev
(context : NWDSContextHandle;
inStr : pnstr8;
outStr : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context of the request.

inStr

(IN) Points to attrName.

outStr
(OUT) Points to the long form of the attribute name.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 369

Remarks

NWDSReadClassDef returns the abbreviated form of some of the common naming attributes (CN,
C,0,0U,L,S, and SA). The long form of these attributes (Common Name, Country Name,
Organization Name, Organizational Unit Name, and so on) is returned from
NWDSReplaceAttrNameAbbrev and pointed to by outStr.

The user must allocate space for the long form of the attribute name. The size of the allocated
memory is
((MAX SCHEMA NAME CHARS)+1) *sizeof (character size)

where character size is 1 for single-byte characters, and 2 for Unicode characters (Unicode
characters are always 16 bits). One character is used for NULL termination.

If the name pointed to by inStr is not an abbreviated name, the contents of inStr will be copied to
outStr.

NCP Calls

None

370 NDK: Novell eDirectory Core Services

NWDSResolveName

Returns a connection handle and an object ID for the object name.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsname.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSResolveName

NWDSContextHandle context,

pnstr8 objectName,

NWCONN_ HANDLE N FAR *conn,

pnuint32 objectID);
Pascal

uses netwin32

Function NWDSResolveName
(context : NWDSContextHandle;
objectName : pnstr8;

Var conn : NWCONN_ HANDLE;
objectID : pnuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to get the ID for.

conn

(OUT) Points to the connection handle where the object resides.

Functions 371

objectID
(OUT) Points to the eDirectory object ID.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The returned connection handle is the NetWare server where the object is stored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddObject (page 87), NWDSAuditGetObjectID (obsolete 06/03) (page 99)

372 NDK: Novell eDirectory Core Services

NWDSRestoreObject

Restores an object’s attribute names and values that were saved by calling NWDSBackupObject.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11,3.12, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

NN EXTERN LIBRARY (NWDSCCODE) NWDSRestoreObject (
NWDSContextHandle context,

pnstr8 objectName,

pnint ptr iterationHandle,

nbool8 more,

nuint32 size,

pnuint8 objectInfo);
Pascal

uses netwin32

Function NWDSRestoreObject
(context : NWDSContextHandle;
objectName : pnstr8;
iterationHandle : pnint ptr;
more : nbool8;

size : nuint32;
objectInfo : pnuint$8
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name for which information is to be returned.

Functions 373

iterationHandle

(IN) Points to value that eDirectory uses internally when repeative calls must be made to
restore an object. Initialize to -1.

more

(IN) Specifies a partial message.
size
(IN) Specifies the length of the information to be restored.

objectInfo

(IN) Points to the starting location of the information to be restored.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
0x89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
0x89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSRestoreObject is used to restore the attributes and attribute values for one object at a time. To
restore the entire directory, NWDSRestoreObject must be called for each object that is to be
restored.

The iterationHandle parameter is used differently in this function. In other functions, the amount of
data returned from the server is potentially larger than a single eDirectory message can
accommodate. Here, the opposite is true. The request can be larger than the largest eDirectory
message. When the more parameter is set to TRUE, the client indicates that not all of the object data
is in the current request and that more data is coming. When the client sets the more parameter to
FALSE, the client indicates the completion of a series of restore requests. Only on completition does
eDirectory process the request.

374 NDK: Novell eDirectory Core Services

In the initial call to NWDSRestoreObject, set the iterationHandle parameter to
NO_MORE _ITERATIONS. On subsequent requests, set it to the value returned in the preceding

reply.

After calling NWDSRestoreObject for the last time, and setting more to FALSE, the value pointed
to by iterationHandle will be set to NO_MORE ITERATIONS on return.

To abort the restoration of an object before sending all the information about an object, call
NWDSCloselteration with an operation type of DSV_RESTORE_ENTRY.

The size parameter specifies the length of the information pointed to by objectInfo. This is the
information saved after calling NWDSBackupObject.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSBackupObject (page 107)

Functions 375

NWDSReturnBlockOfAvailableTrees

Scans the bindery of the specified connection and returns matching tree objects.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSReturnBlockOfAvailableTrees (
NWDSContextHandle context,

NWCONN_HANDLE connHandle,

pnstr scanFilter,

pnstr lastBlocksString,

pnstr endBoundString,

nuint32 maxTreeNames,

ppnstr arrayOfNames,

pnuint32 numberOfTrees,

pnuint32 totalUniqueTrees) ;
Pascal

uses netwin32

Function NWDSReturnBlockOfAvailableTrees
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
scanFilter : pnstr;
lastBlocksString : pnstr;
endBoundString : pnstr;
maxTreeNames : nuint32;

Var arrayOfNames : pnstr;

Var numberOfTrees : nuint32;

Var totalUniqueTrees : nuint32
) : NWDSCCODE;

376 NDK: Novell eDirectory Core Services

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

connHandle

(IN) Specifies the connection handle to be used in scanning for eDirectory trees.

scanFilter
(IN) Points to an ASCII string that defines the scan filter (can contain wildcards).

lastBlocksString
(IN) Points to the last tree name that was returned during a previous scan (used to continue
scanning for more names with the same scan filter or pass NULL).

endBoundString
(IN) Points to a string (used in conjunction with the scanFilter parameter) that sets up a range of
tree names to scan (optional).

maxTreeNames

(IN) Specifies the maximum number of tree names to return (size of the arrayOfNames buffer).

arrayOfNames

(OUT) Points to the first element of an output buffer that will be used to return the tree names.

numberOfTrees
(OUT) Points to the actual number of tree names that were returned in the arrayOfNames
parameter.

totalUniqueTrees

(OUT) Points to the total number of tree names found that match the scan criteria (might be
greater than the numberOfTrees parameter since the buffer size controls how many names are
actually returned).

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL
NO_SUCH_OBJECT

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

This function returns tree names in sorted order and with duplicates removed.

To set up a scan, place a filter string in the scanFilter parameter and set the endBoundString
parameter to NULL. The filter string can contain a wildcard, such as "nov*". The results of this scan
would include all tree names that begin with "nov".

Functions 377

If you want to set an end boundary for the scan, place a second filter string in the endBoundString
parameter. For example, if the scanFilter parameter contains "a*" and endBoundString contains
"ac*", the scan results would include all tree names that begin with "a" that are less than the ordinal
value of "ad".

Initializing the Output Buffer. You are responsible for setting up and initializing an output buffer
before calling NWDSReturnBlockOfAvailableTrees. You must supply the array of pointers as well
as supplying strings of NW_MAX TREE NAME LEN for each element in the array. The
following example demonstrates initializing the buffer.

main ()
{
ppnstr8 names;
int i
int blockOfTreesCount = 25;

names = malloc(sizeof (pnstr8) * blockOfTreesCount);

for (i=0; 1<25; 1i++)
{

names[i] = malloc (NW MAX TREE NAME LEN);
}

NWDSReturnBlockOfAvailableTrees(,,,,,,names,,);
}

You could set the maxTreeNames parameter equal to 0 and call
NWDSReturnBlockOfAvailableTrees. The value returned in the totalUniqueTrees parameter could
then be used to determine how much memory to allocate for the arrayOfNames parameter.

NOTE: NW_MAX TREE NAME LEN contains the maximum length of non-Unicode names,
and NW_MAX TREE NAME BYTES contains the maximum length of Unicode names. The
DCV_XLATE STRINGS flag determines whether local code page format or Unicode strings are
returned. For more information, see “DCK FLAGS Key” on page 18.

Continuing a Scan. If the value returned in the totalUniqueTrees parameter is greater than the
value returned in the numberOfTrees parameter, there are more tree names that meet the scan filter
criteria than were returned in the arrayOfNames parameter. If this is the case, make a subsequent call
to NWDSReturnBlockOfAvailableTrees and begin the scan where the previous call left off.

To set up a subsequent call, keep the values of the scanFilter and endBoundString parameters the
same as before, and place the name that was returned in the last element of the arrayOfNames
parameter into the lastBlocksString parameter.

NCP Calls

0x2222 23 55 Get Server Sources Information

See Also

NWDSScanConnsForTrees (page 379), NWDSScanForAvailableTrees (page 381)

378 NDK: Novell eDirectory Core Services

NWDSScanConnsForTrees

Scans existing connections for tree names.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSScanConnsForTrees (
NWDSContextHandle context,

nuint numOfPtrs,

pnuint numOfTrees,

ppnstrs8 treeBufPtrs);
Pascal

#include <nwdsconn.inc>

Function NWDSScanConnsForTrees
(context : NWDSContextHandle;

numOfPtrs : nuint;
numOfTrees : pnuint;
Var treeBufPtrs : ppnstr8
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

numOfPtrs

(IN) Specifies the number of pointers available in treeBufPtrs.

numOfTrees
(OUT) Points to the number of tree names that can be returned by NWDSScanConnsForTrees.

treeBufPtrs

(OUT) Points to an array of pointers that will receive the tree names.

Functions 379

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSScanConnsForTrees scans existing connections and returns a list of tree names associated
with those connections. The list does not include duplicates and is sorted by the defined collation
table.

The numOfPtrs parameter indicates the maximum number of strings that may be assigned by
NWDSScanConnsForTrees. The numOfTrees parameter specifies the number of strings assigned to
treeBufPtrs. In the event that numOfTrees exceeds numOfPtrs, numOfPtrs strings will be assigned
and numOfTrees will be returned.

The maximum tree name length is specified by NW_MAX TREE NAME LEN, which is a
constant defined to be 33 bytes in length. Unicode defines NW_MAX TREE NAME BYTES to be
66 bytes in length.

The tree names returned imply authentication since a connection isn’t designated as Bindery or
eDirectory until authentication.

The context parameter is used to determine the character type for the tree name. The
DCV_XLATE_STRINGS flag determines whether local code page format or Unicode strings are
returned. For more information, see “DCK_FLAGS Key” on page 18

NOTE: When NWDSScanConnsForTrees is called on a workstation running Client32, which runs
on Windows 95, it does not actually scan connections. This call utilizes Client32’s ability to scan for
identities.

NCP Calls

None

See Also

NWDSScanForAvailableTrees (page 381), NWDSReturnBlockOfAvailableTrees (page 376)

380 NDK: Novell eDirectory Core Services

NWDSScanForAvailableTrees

Scans a connection for tree objects.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSScanForAvailableTrees (
NWDSContextHandle context,

NWCONN_HANDLE connHandle,

pnstr scanFilter,

pnint32 scanIndex,

pnstr treeName) ;
Pascal

uses netwin32

Function NWDSScanForAvailableTrees
(context : NWDSContextHandle;
connHandle : NWCONN HANDLE;
scanFilter : pnstr;

Var scanIndex : pnint32;
treeName : pnstr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

connHandle

(IN) Specifies the connection handle to be used in scanning for eDirectory trees.

scankFilter

(IN) Points to an ASCII string that allows wildcards to be specified in the scan.

Functions 381

scanIndex

(IN/OUT) Points to the index to be used on the next iteration of the scan.

treeName

(OUT) Points to the name of the tree found in the scan operation.

Return Values

0x0000 0000 SUCCESSFUL

0x89FC BIND_NO_SUCH_OBJECT
nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).
Remarks

NWDSScanForAvailableTrees uses the connection specified in connHandle to scan for eDirectory
tree objects (object type 0x7802) using the server bindery (the dynamic bindery is used for NetWare
4.x and 5.x servers). When the list of tree objects is exhausted, the NWDSScanForAvailableTrees
function returns BIND NO_SUCH_OBJECT.

This function may return duplicate tree names because it returns the tree name from each server
which is advertising it. To receive a sorted list with duplicates removed, use
NWDSReturnBlockOfAvailableTrees (page 376).

The scanFilter value allows wildcard matching to be specified for the scan operation. The scanIndex
value should be initially set to -1 and must not be altered by the user after the first call.

Unlike other eDirectory functions, there is no need to call NWDSCloselteration to discontinue
calling NWDSScanForAvailableTrees once the search is begun.

The context parameter is used to determine the character type for the tree name. The
DCV_XLATE_STRINGS flag determines whether local code page format or Unicode strings are
returned. For more information, see “DCK_FLAGS Key” on page 18

NCP Calls

0x2222 23 55 Scan Bindery Object

See Also

NWDSScanConnsForTrees (page 379), NWDSReturnBlockOfAvailableTrees (page 376)

382 NDK: Novell eDirectory Core Services

NWDSSearch

Searches a branch of the eDirectory tree for objects satisfying a specified set of requirements.

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSearch (
NWDSContextHandle context,

pnstr8 baseObjectName,
nint scope,
nbool8 searchAliases,
pBuf T filter,
nuint32 infoType,
nbool8 allAttrs,
pBuf T attrNames,
pnint ptr iterationHandle,
nint32 countObjectsToSearch,
pnint32 countObjectsSearched,
pBuf T objectInfo);
Pascal

uses netwin32

Function NWDSSearch
(context : NWDSContextHandle;
baseObjectName : pnstr8;
scope : nint;
searchAliases : nbool8;
filter : pBuf T;
infoType : nuint32;
allAttrs : nbool8;
attrNames : pBuf T;
iterationHandle : pnint ptr;
countObjectsToSearch : nint32;
countObjectsSearched : pnint32;

Functions 383

objectInfo : pBuf T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

baseObjectName

(IN) Points to the name of a subtree root to be searched.

scope

(IN) Specifies the depth of the search (see Section 5.22, “Scope Flags,” on page 483).

searchAliases
(IN) Specifies whether to dereference subordinate aliases in the search:
TRUE Aliases will be dereferenced
FALSE Aliases will not be dereferenced

filter
(IN) Points to a search filter constructed by calling the NWDSAddFilterToken function. This
parameter must be specified (cannot be NULL). To specify no filtering (return all values)
construct a filter equivalent to objectclass=*.
infoType
(IN) Specifies the type of information to return (see Section 5.16, “Information Types for
Search and Read,” on page 476).
allAttrs
(IN) Specifies the scope of the information to return:
TRUE Return information concerning all attributes
FALSE Return information for only the attributes named in the attrNames parameter
attrNames

(IN) Points to the names of the attributes for which information is to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent iterations of NWDSSearch.

countObjectsToSearch
(IN) Reserved for future use.

countObjectsSearched
(OUT) Points to the number of objects searched by the server.

objectInfo

(OUT) Points to an output buffer containing the names of the objects along with any requested
attribute values satisfying the search.

384 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSSearch succeeds if the base object is located, regardless of whether there are any
subordinates to the base object.

If a replica-specific error is returned, NWDSSearch tries an alternate replica for the partition. If none
of the alternate replicas can be contacted, 0 results are returned without an accompanying error.
Please confirm that your client can contact all servers in the tree.

The baseObjectName parameter identifies the object (or possibly the root) to which the search is
relative. If the string is empty, the current context is selected as the base object.

Aliases are dereferenced while locating the base object unless the context flag associated with
DCV_DEREF_ALIASES is not set. For more information, see Section 5.6, “Context Keys and
Flags,” on page 467.

Aliases among the subordinates of the base object are dereferenced during the search unless the
searchAliases parameter is FALSE. If the searchAliases parameter is TRUE, the search continues in
the subtree of the aliased object.

The filter parameter eliminates objects not of interest to the application. Information is returned only
on objects that satisfy the filter. For information on building a search filter, see Section 1.4, “Search
Requests,” on page 30. For step-by-step instructions, see “Searching eDirectory” on page 63.

The infoType, allAttrs, nd attrNames parameters indicate what attribute information is requested.

If the allAttrs parameter is TRUE, information about all attributes associated with the object is
requested and the attrNames parameter is ignored (in which case, the attrNames parameter can be
NULL). If the allAttrs parameter is FALSE, only the attributes specified by the attrNames parameter
are requested.

If the allAttrs parameter is FALSE and the attrNames parameter is NULL, no attribute information is
returned, and the infoType parameter is not meaningful. In this case, the value returned by
NWDSSearch determines whether the specified object exists, or whether access to the object is
allowed.

The iterationHandle parameter controls the retrieval results that are larger than the result buffer
pointed to by the objectInfo parameter.

Before calling NWDSSearch initially, set the contents of the iteration handle pointed to by the
iterationHandle parameter to NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSSearch returns from its initial call, the
location pointed to by the iterationHandle parameter is set to NO_MORE ITERATIONS. If the
iteration handle is not set to NO_MORE _ITERATIONS, use the iteration handle for subsequent
calls to NWDSSearch to obtain further portions of the results. When the results are completely
retrieved, the contents of the iteration handle will be set to NO_MORE_ITERATIONS.

Functions

385

NOTE: On large networks, iterative processes, such as NWDSSearch, might take a lot of time to
complete. For example, listing all of the User objects on a corporate network might be too time
consuming. Developers should call the NWDSCloselteration (page 126) function to allow users of
their applications to abort an iterative process that is taking too long to complete.

To end the Search operation before the complete results have been retrieved, call
NWDSCloselteration with a value of DSV_SEARCH to free memory and states associated with the
Search operation.

The level of granularity for partial results is an individual attribute value. If the attribute is a
multivalued attribute and its values are split across two or more calls to NWDSSearch, the current
object name, object info, and attribute name is repeated in each subsequent result buffer.

For example code, see ndssearc.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/
index.htm).

NOTE: Currently, because of aliasing, searching a subtree can result (1) in duplicate entries or (2) in
an infinite loop.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSCloselteration (page 126), NWDSAddFilterToken (page 84), NWDSAllocFilter (page 97),
NWDSDelFilterToken (page 140), NWDSFreeFilter (page 162), NWDSPutFilter (page 323)

386 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/index.htm

NWDSSetContext

Sets the information in an NDS context handle.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSetContext (
NWDSContextHandle context,

nint key,
nptr value) ;
Pascal

uses netwin32

Function NWDSSetContext
(context : NWDSContextHandle;
key : nint;
value : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the context handle for the request.

key
(IN) Specifies the information to set (see Section 5.6, “Context Keys and Flags,” on page 467).

value

(IN) Points to the values to use in changing the context handle information.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Functions 387

Remarks

Applications cannot directly change context handle information; they must use the
NWDSSetContext function to change information.

The key parameter specifies the type of information to change, and the value parameter points to the
new value. The value parameter must point to a variable matching the data type specified by the key
parameter. For data types and defined keys, see Section 5.6, “Context Keys and Flags,” on page 467.

The NWDSSetContext function must be called for each key that has information that needs to be
modified.

NCP Calls

None

See Also

NWDSCreateContextHandle (page 133), NWDSFreeContext (page 160), NWDSGetContext
(page 191)

388 NDK: Novell eDirectory Core Services

NWDSSetCurrentUser

Sets the user handle of an eDirectory user.
Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: NDS

Syntax

#include <nwconn.h>
#include <nwdsapi.h>

int NWDSSetCurrentUser (
int userHandle) ;

Parameters

userHandle

(IN) Specifies the user handle to set as the current user's handle.

Return Values

0 (0x00) SUCCESSFUL
2 (0x02) INVALID_USER
Remarks

This function sets the value of the current user in the Thread Group Control Structure (TGCS). The
current user determines which eDirectory authentication information is used. For more information,

see “Establishing Identities to Multiple eDirectory Trees—NLM Platform” on page 55.

See Also

NWDSGetCurrentUser (page 196)

Functions 389

NWDSSetDefNameContext

Sets the default name context for a specified tree.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsconn.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSetDefNameContext (
NWDSContextHandle context,

nuint nameContextlLen
pnstr8 nameContext) ;
Pascal

#include <nwdsconn.inc>

Function NWDSSetDefNameContext
(context : NWDSContextHandle;

nameContextLen : nuint;
nameContext : pnstr8
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request or NULL for the preferred tree.

nameContextLen

(IN) Specifies the length (in bytes) of the nameContext buffer.

nameContext

(IN) Points to the name context value to set as default.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

390 NDK: Novell eDirectory Core Services

Remarks

NWDSSetDefNameContext sets the default name context for the tree specified in the context (or if
the tree name isn’t set, the preferred tree name).

NWDSSetDefNameContext differs from NWSetDefaultNameContext in that
NWDSSetDefNameContext has an added parameter, context, and operates on a per tree basis. Also,
NWDSSetDefNameContext can return the name context in Unicode while
NWSetDefaultNameContext could return only the data in local code page format.

The default name context for the preferred tree can be set by the DEFAULT NAME CONTEXT
configuration parameter, or by calling either NWDSSetDefNameContext or
NWSetDefaultNameContext. The default name context for another tree (different from the preferred
tree) can be set only by calling NWDSSetDefNameContext.

The default name context can be from 0 to 257 bytes long for local code page strings (including the
NULL), or 0 to 514 bytes long for Unicode strings (including the 2 bytes for NULL). If the
nameContext buffer is too large, an error is returned and no data is copied.

If the underlying requester does not support multiple eDirectory trees, the default name context for
the default tree will be returned (that is, the tree name specified in the context will be ignored).

NCP Calls

None

See Also

NWGetDefaultNameContext (page 410), NWDSGetDefNameContext (page 197),
NWSetDefaultNameContext (page 427)

Functions 391

NWDSSetMonitoredConnection (obsolete 06/03)

Tracks the connection, but is now obsolete.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSetMonitoredConnection
(NWCONN_HANDLE connHandle) ;

Pascal
uses netwin32
Function NWDSSetMonitoredConnection

(connHandle : NWCONN HANDLE
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the connection handle of the desired connection.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL
nonzero value UNSUCCESSFUL

Remarks

When a user logs in to the eDirectory tree, several attributes are created and maintained on the
NetWare server where the user’s object resides. If the connection is removed, these attributes are
destroyed. To prevent these attributes from being destroyed, call NWDSSetMonitoredConnection to
track the connection. If the connection is destroyed, several eDirectory functions such as
NWDSWhoAml do not return valid information.

392 NDK: Novell eDirectory Core Services

No replacement is needed for this function as monitored connections are managed autmoatically by
the client software.

NCP Calls

None

See Also

NWDSOpenMonitoredConn (page 299)

Functions 393

NWDSSplitPartition

Divides a partition into two partitions at a specified object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSplitPartition (
NWDSContextHandle context,

pnstr8 subordinatePartition,
nflag32 flags);
Pascal

uses netwin32

Function NWDSSplitPartition
(context : NWDSContextHandle;
subordinatePartition : pnstr8;
flags : nflag32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subordinatePartition

(IN) Points to the name of the object where the partition will be split and which will become the
root of the subordinate partition.

flags
(IN) Reserved; pass in 0.

394 NDK: Novell eDirectory Core Services

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
Ox89E2 TOO_FEW_FRAGMENTS
Ox89E3 TOO_MANY_FRAGMENTS
0x89E4 PROTOCOL_VIOLATION
0x89E5 SIZE_LIMIT_EXCEEDED
0x89FD UNKNOWN_REQUEST
0x89FD INVALID_PACKET_LENGTH
Ox89FE BAD_PACKET

Ox89FF Failure not related to eDirectory
nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).
Remarks

Operations to split a partition are always performed on the master replica. If the context handle
points to a read-write or read-only replica, the request is redirected to the master replica.

The object specified becomes the root object of the subordinate partition.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSAddReplica (page 91), NWDSJoinPartitions (page 246)

Functions 395

NWDSSyncPartition

Signals the skulker to schedule an update of a specified partition a specified number of seconds into
the future.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdspart.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSyncPartition (
NWDSContextHandle context,

pnstr8 server,

pnstr8 partition,

nuint32 seconds) ;
Pascal

uses netwin32

Function NWDSSyncPartition
(context : NWDSContextHandle;
server : pnstr8;
partition : pnstr8;
seconds : nuint32

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name where the partition resides.

partition

(IN) Points to the name of the partition to update.

396 NDK: Novell eDirectory Core Services

seconds

(IN) Specifies the number of seconds to wait before beginning the synchronization process.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

The partition must reside on the specified server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 01 Ping for eDirectory NCP

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSSyncReplicaToServer (page 398), NWDSSyncSchema (page 400)

Functions 397

NWDSSyncReplicaToServer

Requests a replica to synchronize with a specific server.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSyncReplicaToServer (
NWDSContextHandle context,

pnstr8 serverName,

pnstr8 partitionRootName,

pnstr8 destServerName,

nuint32 actionFlags,

nuint32 delaySeconds) ;
Pascal

uses netwin32

Function NWDSSyncReplicaToServer
(context : NWDSContextHandle;
serverName : pnstr8;
partitionRootName : pnstr8;
destServerName : pnstr8;

actionFlags : nuint32;
delaySeconds : nuint32
) : NWDSCCODE;
Parameters
context

(IN) Specifies the NDS context for the request.

serverName

(IN) Specifies the server that contains the replica to be synchronized.

partitionRootName

(IN) Points to the name of the partition whose replica is to be synchronized.

398 NDK: Novell eDirectory Core Services

destServerName

(IN) Points to the server to which the replica should synchronize.

actionFlags

(IN) Specifies the synchronization action to be taken.

delaySeconds

(IN) Specifies the number of seconds to delay before beginning the synchronization.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWDSSyncReplicaToServer requests that a replica initiate synchronization with the destination
server identified by destServerName. The actionFlags parameter has the following definition:

SF_DO_IMMEDIATE

Perform the action immediately.

SF_TRANSITION

If the replica is in one of the states "New", "Dying", or "Transition On", the request is ignored
and SUCCESS is returned. Ignored unless SF. DO _IMMEDIATE is also set

SF_SEND_ALL

Synchronize all objects, as opposed to only those that have changed.

SF_SEND_SINGLE_ENTRY
Synchronize only the subject object. Ignored if SF_ SEND ALL is set.

NWDSSyncReplicaToServer has the side effect of blocking until the synchronization process has
completed. The return code indicates the status of the replica by returning SUCCESS or a negative
error code, which indicates a problem with synchronization of this replica.

NCP Calls

None

See Also

NWDSSyncPartition (page 396)

Functions 399

NWDSSyncSchema

Signals the skulker to schedule an update of the schema a specified number of seconds in the future.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdssch.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSSyncSchema (
NWDSContextHandle context,

pnstr8 server,
nuint32 seconds) ;
Pascal

uses netwin32

Function NWDSSyncSchema
(context : NWDSContextHandle;
server : pnstr8;
seconds : nuint32

) : NWDSCCODE;

Parameters

context
(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name to signal.

seconds

(IN) Specifies the number of seconds to wait before beginning the synchronization.

400 NDK: Novell eDirectory Core Services

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWDSSyncSchema wakes up the sleeping synchronization process and alerts it to begin
synchronization at the time specified.

NCP Calls

0x2222 39 0 Synchronize Schema

See Also

NWDSSyncPartition (page 396)

Functions 401

NWDSUnlockConnection (obsolete 06/03)

Enables the connection to be placed on the LRU list and unlicenses the connection if no other
resources are allocated, but is now obsolete.

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSUnlockConnection
(NWCONN_HANDLE connHandle) ;

Pascal
uses netwin32
Function NWDSUnlockConnection

(connHandle : NWCONN HANDLE
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the connection to unlock.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL

Remarks

If there are no other tasks having resources on the connection, and the connection is licensed, the
connection will be unlicensed on the NetWare server.

The connection is licensed by calling NWCCLicenseConn. For the connection to be licensed, it has
to be authenticated.

Use NWCCUnlincenseConn in place of this function.

402 NDK: Novell eDirectory Core Services

NCP Calls

None

See Also

NWCCGetConnRefInfo (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/
cmgnxenu/data/sdk589.html), NWCCLicenseConn (http://developer.novell.com/ndk/doc/clib/
index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html), NWDS Authenticate (obsolete 06/03)

(page 101)

Functions 403

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk589.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk625.html

NWDSVerifyObjectPassword

Verifies the password of an object. Does not support international or extended characters in
passwords.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSVerifyObjectPassword (
NWDSContextHandle context,

nflag32 optionsFlag,

pnstr8 objectName,

pnstr8 password) ;
Pascal

uses netwin32

Function NWDSVerifyObjectPassword
(context : NWDSContextHandle;
optionsFlag : nflag32;
objectName : pnstr8;
password : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the handle to the name context structure.

optionsFlag

(IN) Reserved; pass in zero.

objectName

(IN) Points to the object name (under the context) of the object to verify.

404 NDK: Novell eDirectory Core Services

password

(IN) Points to the clear-text password for the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

To call NWDS VerifyObjectPassword successfully, the current password of the object must be
known. If no such password exists, password should point to a zero-length string. All strings used by
NWDSVerifyObjectPassword are NULL-terminated.

NOTE: NWDSVerifyPwdEx (page 406) supports international and extended characters and is
recommended in place of NWDSVerifyObjectPassword.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSGenerateObjectKeyPair (page 167), NWDSLogin (page 270),
NWDSChangeObjectPassword (page 116)

Functions 405

NWDSVerifyPwdEx

Verifies the password of an object. Supports international and extended characters in passwords.
NWDS VerifyPwdEx was not implemented in the old NLMs so you might not find it if you are using
an old netnlm32.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwdsasa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSVerifyPwdEx (
NWDSContextHandle context,

pnstr8 objectName,

nuint32 pwdFormat,

nptr pwd) ;
Pascal

uses netwin32

Function NWDSVerifyPwdEx
(context : NWDSContextHandle;
objectName : pnstr8;
pwdFormat : nuint32;
pwd : nptr

) : NWDSCCODE;

Parameters

context

(IN) Specifies the handle to the name context structure.

objectName

(IN) Points to the object name (under the context) of the object to verify.

pwdFormat

(IN) Specifies the format of the password data. Select from the following:

406 NDK: Novell eDirectory Core Services

Password Format Description

PWD_UNICODE_STRING Allows any unicode string to be used as a password.
PWD_UTF8 STRING Allows any UTF8 string to be used as a password.
PWD_RAW_C_STRING Allows any arbitrary NULL-terminated data to be used as a

password. Passwords specified with this format are not
interoperable with unicode and UTF8 passwords.

pwd
(IN) Points to the password for the object.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values”.

Remarks

To call NWDS VerifyObjectPassword successfully, the current password of the object must be
known. If no such password exists, password should point to a zero-length string. All strings used by
NWDSVerifyObjectPassword are NULL-terminated. password can be any length and all characters
are significant. Upper- and lowercase letters are distinct.

NOTE: The PWD _RAW _C_STRING password format allows any arbitrary NULL-terminiated
data to be used as a password. Passwords specified with this format are not interoperable with
unicode and UTF8 passwords.

NCP Calls

0x2222 104 02 Send eDirectory Fragmented Request/Reply

See Also

NWDSGenerateKeyPairEx (page 164), NWDSLoginEx (page 272), NWDSChangePwdEx
(page 119)

Functions 407

NWDSWhoAml

Returns the name of the object currently logged in to eDirectory.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsdsa.h>

N EXTERN LIBRARY (NWDSCCODE) NWDSWhoAmI (
NWDSContextHandle context,
pnstr8 objectName) ;

Pascal

uses netwin32

Function NWDSWhoAmI
(context : NWDSContextHandle;
objectName : pnstr8

) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(OUT) Points to the name of the object logged in to eDirectory.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

If the object is not currently logged in, NWDSWhoAml returns an error.

408 NDK: Novell eDirectory Core Services

The object name is returned in partial dot form. Whether the name in objectName is returned as a
full name or a partial name depends upon the setting of the context flags:

¢ [fthe DCV_CANONICALIZE NAMES flag is set to ON, NWDSWhoAml returns a partial
name.

¢ Ifthe DCV_CANONICALIZE NAMES flag is set to OFF, NWDSWhoAml returns a
distinguished name.

If the context flag associated with DCV_TYPELESS NAMES is set to ON, the name returned by
NWDSWhoAmlI will be untyped; otherwise it will be typed.

The caller must allocate memory to hold the distinguished name. The size of memory allocated is
(MAX DN _CHARS+1)*sizeof(character size), where character size is 1 for single-byte characters
and 2 for Unicode characters (Unicode characters are always 16 bits). One character is used for
NULL termination.

NCP Calls

None

Functions 409

NWGetDefaultNameContext

Allows the user to get the default name context.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h
or
#include <nwndscon.h>

N _EXTERN LIBRARY (NWDSCCODE) NWGetDefaultNameContext (

nuintlo bufferSize,
pnuint8 context) ;
Pascal

uses netwin32

Function NWGetDefaultNameContext

(bufferSize : nuintlo;
context : pnuint$8
) : NWCCODE;
Parameters
bufferSize

(IN) Specifies the maximum size of buffer.

context

(OUT) Points to a buffer retrieving the 256-byte default name context. A NULL-terminated
string containing the name context is returned.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL
0x8833 INVALID_BUFFER_LENGTH

410 NDK: Novell eDirectory Core Services

Remarks

The name may have been set originally in net.cfg, or it could be set by calling
NWSetDefaultNameContext. If the name context is empty, a NULL string is returned.

NCP Calls

None

See Also

NWSetDefaultNameContext (page 427)

Functions 411

NWGetFileServerUTCTime

Returns the Coordinated Universal Time (UTC) setting of a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWGetFileServerUTCTime (
NWCONN_HANDLE conn,
pnuint32 time) ;

Pascal

uses netwin32

Function NWGetFileServerUTCTime
(conn : NWCONN_ HANDLE;
time : pnuint32

) : nint;

Parameters

conn

(IN) Specifies the connection handle to the server whose time needs to be retrieved.
time

(OUT) Points to the time setting (in UTC time) of the server.

Return Values

These are common return values.

0x0000 0000 SUCCESSFUL
0xFD6D ERR_TIME_NOT_SYNCHRONIZED

412 NDK: Novell eDirectory Core Services

nonzero value Nonzero values indicate errors. See “NDS Return Values” (—001 to —799).

Remarks

NWGetFileServerUTCTime determines the time setting on remote and local servers. (The time
(http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/prog_enu/data/
sdk1823.html) (Program Management (http://developer.novell.com/ndk/doc/clib/index.html?page=/
ndk/doc/clib/prog_enu/data/h9qu926c.html)) function returns only the time setting for local
servers.)

The time placed in the location pointed to by the time parameter represents the time in seconds since
January 1, 1970 (Coordinated Universal Time).

NCP Calls

0x2222 114 1 Get UTC Time

Functions 413

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/prog_enu/data/sdk1823.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/prog_enu/data/h9qu926c.html

NWGetNumConnections

Returns the number of connections that can be supported by VLM.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWDSCCODE) NWGetNumConnections (
pnuintlo6 numConnections) ;

Pascal
uses netwin32
Function NWGetNumConnections

(numConnections : pnuintl6
) : NWCCODE;

Parameters

numConnections

(OUT) Points to the number of connections supported.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL
0x8800 VLM_ERROR

Remarks

The number of connections can be configured in the net.cfg file.

NCP Calls

None

414 NDK: Novell eDirectory Core Services

NWGetNWNetVersion

Returns the NWNet library version number.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N EXTERN LIBRARY (void) NWGetNWNetVersion (

nuint8 N_FAR *majorVersion,
nuint8 N_FAR *minorVersion,
nuint8 N_FAR *revisionLevel,

nuint8 N_FAR *betaReleaselevel) ;

Pascal

#uses netwin32

Function NWGetNWNetVersion

(majorVersion : pnuint8;
minorVersion : pnuint8;
revisionLevel : pnuint8;

betaReleaselevel : pnuint8
) i

Parameters

majorVersion

(OUT) Points to the major version number.

minorVersion

(OUT) Points to the minor version number.

revisionLevel

(OUT) Points to the revision level number.

betaReleaseLevel

(OUT) Points to the beta release level number.

Functions 415

NCP Calls

None

See Also

NWDSGetDS VerInfo (page 201)

416 NDK: Novell eDirectory Core Services

NWGetPreferredConnName

Gets the name of the preferred connection.

NetWare Server: N/A

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWDSCCODE) NWGetPreferredConnName (
pnuint8 preferredName,
pnuint8 preferredType) ;

Pascal

uses netwin32

Function NWGetPreferredConnName
(preferredName : pnuint8;
preferredType : pnuint8

) : NWCCODE;

Parameters

preferredName

(OUT) Points to the buffer where the preferred name is stored.

preferredType

(OUT) Points to the preferred name type set NWNDS CONNECTION = 1 (Preferred Tree
Name) or 0 (Preferred Server)].

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL

Remarks

NWGetPreferredConnName will work only if VLMs are loaded; it will not work with NETX.

Functions 417

If both preferredType names are set by API calls or net.cfg, the order is determined at VLM load
time.

Defaults are Preferred Tree Name, then Preferred Server.

If a Preferred Tree Name is not specified, the Preferred Server will be returned and preferredType
will be zero (Preferred Server). However, if a Preferred Tree Name is specified in net.cfg, or if
NWSetPreferredDSTree is called, preferredName will be the Preferred Tree Name and the server
type will be set to NWNDS_CONNECTION = 1 (Preferred Tree Name). If bind.vim is loaded
before nds.vlm, the opposite is true.

NCP Calls

None

See Also

NWSetPreferredDSTree (page 429)

418 NDK: Novell eDirectory Core Services

NWIsDSAuthenticated

Returns whether eDirectory has credentials for a background authentication in the current
eDirectory tree. This function is obsolete. Call NWDSCanDSAuthenticate (page 112), which

indicates if there is an authenticated identity for the tree, or NWDSScanConnsForTrees (page 379),

which returns a list of trees that have authenticated identities, instead.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

Cc

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWCCODE) NWIsDSAuthenticated
void) ;

Pascal

uses netwin32

Function NWIsDSAuthenticated
: NWCCODE;

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0001 Authenticated through eDirectory
0x0000 0000 Not authenticated through eDirectory

Remarks

On NetWare, NWIsDSAuthenticated finds the current thread identity and checks to see if it is
authenticated. On Windows, it returns true if there is any NDS authenticated identity.

NCP Calls

None

Functions 419

See Also

NWCCGetConnRefInfo (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/
cmgnxenu/data/sdk589.html), NWCCScanConnRefs (http://developer.novell.com/ndk/doc/clib/
index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk697.html)

420 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk589.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/sdk697.html

NWIsDSServer

Checks presence or absence of eDirectory on the server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWIsDSServer (
NWCONN_HANDLE conn,
pnstr8 treeName) ;

Pascal

uses netwin32

Function NWIsDSServer
(conn : NWCONN_ HANDLE;
treeName : pnstr8

) : NWDSCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

treeName

(OUT) Points to the tree name returned if the server specified by conn is an eDirectory server.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0001 eDirectory NCP is hooked and eDirectory is running
0x0000 0000 Not eDirectory

Functions 421

NCP Calls

0x2222 104 01 Ping for eDirectory NCP

422 NDK: Novell eDirectory Core Services

NWNetinit

Does the initial setup that is necessary before calling any other eDirectory functions.
NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWNetInit (
nptr in,
nptr out) ;

Pascal

uses netwin32

Function NWNetInit
(in : nptr;

out : nptr
) : NWDSCCODE;

Parameters
in
(IN) Points to the input parameter value.

out

(OUT) Points to the output parameter value.

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWNetlnit initializes the eDirectory library. Both parameters, in and out, should be NULL when
NWNetlnit is called.

Functions 423

NCP Calls

None

See Also

NWNetTerm (page 425)

424 NDK: Novell eDirectory Core Services

NWNetTerm

Shuts down and cleans up after the eDirectory library.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwdsmisc.h>

N_EXTERN LIBRARY (NWDSCCODE) NWNetTerm (
nptr reserved) ;

Pascal
uses netwin32
Function NWNetTerm (

reserved : nptr
) : NWDSCCODE;

Return Values

0x0000 0000 SUCCESSFUL

nonzero value Nonzero values indicate errors. See “NDS Return Values” (-001 to —799).

Remarks

NWNetTerm terminates the eDirectory library.

Under VLM, NWNetTerm has no effect and other eDirectory functions may be called after calling
NWNetTerm.

Under NLM, Windows 95, Windows 98, Windows NT, Windows 2000, and Windows XP,
NWNetTerm should be called last as it will shut down and clean up after eDirectory.

If, after calling NWNetTerm, you want to call other eDirectory functions, call NWNetlnit before
calling any other eDirectory functions.

Functions 425

NCP Calls

None

See Also

NWNetlnit (page 423)

426 NDK: Novell eDirectory Core Services

NWSetDefaultNameContext

Sets the default name context.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP

Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwndscon.h>

N _EXTERN LIBRARY (NWDSCCODE) NWSetDefaultNameContext (
nuintlé contextLength,
pnuint8 context) ;

Pascal

uses netwin32

Function NWSetDefaultNameContext
(contextLength : nuintl6;
context : pnuint$8

) : NWCCODE;

Parameters

contextLength
(IN) Specifies the length of the context.

context

(IN) Points to the buffer containing the 256-byte default name context.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL
0x8833 INVALID_BUFFER_LENGTH

Functions 427

Remarks

The default name context may have been originally set in net.cfg. If the name is longer than 256
bytes, it will be truncated.

NCP Calls

None

See Also

NWGetDefaultNameContext (page 410)

428 NDK: Novell eDirectory Core Services

NWSetPreferredDSTree

Sets the preferred eDirectory tree name in the requester’s tables.

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98, Windows 2000, Windows XP
Library: Cross-Platform NDS (NET*.*)

Service: NDS

Syntax

c

#include <nwnet.h>
or
#include <nwndscon.h>

N EXTERN LIBRARY (NWDSCCODE) NWSetPreferredDSTree (
nuintlé length,
pnuint8 treeName) ;

Pascal

uses netwin32

Function NWSetPreferredDSTree
(length : nuintlé6;
treeName : pnuint$8

) : NWCCODE;

Parameters

length
(IN) Specifies the length of the tree name.

treeName

(IN) Points to the eDirectory tree name.

Return Values

These are common return values; see “NDS Return Values” for more information.

0x0000 0000 SUCCESSFUL
0x8836 INVALID_PARAMETER

Functions 429

Remarks

NWSetPreferredDSTree sets a tree name for future eDirectory functions. The tree name may also be
set in net.cfg. The maximum name length is 32 characters. If the tree name is too long,
INVALID_PARAMETER is returned.

NCP Calls

None

430 NDK: Novell eDirectory Core Services

Structures

This chapter lists alphabetically the structures used by the Novell® eDirectory™ functions and the
eDirectory schema.

*

“AsnlID T” on page 432
“Attr_Info T” on page 433
“Back Link T” on page 434
“Bit_String T” on page 435
“Buf T” on page 436
“CI_List_T” on page 438
“Class_Info_T” on page 439
“EMail_Address_T” on page 440
“Fax_Number T” on page 441
“Filter Cursor T on page 442
“Filter Node T on page 443
“Hold_T” on page 445
“NDSOSVersion_T” on page 446
“NDSStatsInfo_T” on page 447
“Net_Address_T” on page 449
“NWDS TimeStamp T” on page 450
“Object ACL_T” on page 451
“Object_Info T on page 452
“Octet_List T” on page 453
“Octet_String_T” on page 454
“Path_T” on page 455
“Replica_Pointer T” on page 456
“Syntax_Info T” on page 457
“TimeStamp_T” on page 458
“Typed_Name T” on page 459
“Unknown_Attr_T” on page 460

Structures

431

Asn1ID_T

Holds the ASN.1 ID of an object.
Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct

{

nuint32 length;

nuint8 data [MAX ASN1 NAME];
} AsnlID T;

Pascal

AsnlID T = Record
length : nuint32;
data : Array[0..MAX ASN1 NAME-1] Of nuint8
End;

Fields

length

Specifies the number of characters in the array.

data

Contains a BER encoded string which specifies the ASN.1 ID for the object class or attribute
definition.

NDS 8 verifies that the ASN.1 is BER encoded. Previous versions of NDS do not verify the string.

432 NDK: Novell eDirectory Core Services

Attr_Info_T

Contains information about an attribute definition.
Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct
{

nuint32 attrFlags ;
nint32 attrSyntaxID ;
nint32 attrLower ;
nint32 attrUpper ;

AsnlID T asnlID ;
} Attr Info T;

Pascal

Attr Info T = Record
attrFlags : nuint32;
attrSyntaxID : nint32;
attrLower : nint32;
attrUpper : nint32;
asnlID : AsnlID T

End;

Fields

attrFlags
Specifies the constraints assigned to the attribute (see Section 5.1, “Attribute Constraint Flags,”
on page 461).

attrSyntaxID
Specifies the syntax ID of the attribute type (see Section 5.26, “Syntax IDs,” on page 487).

attrLower

Specifies the lower limit of the attribute.

attrUpper
Specifies the upper limit of the attribute.

asnlID

Specifies the object identifier allocated according to the rules specified in the ASN.1 standard,;
if no object identifier has been registered for the class, a zero-length octet string is specified.
NetWare 5.x requires an ASN.1 identifier.

Structures 433

Back Link T

Contains eDirectory information for the attributes which use the Back Link syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

nuint32 remotelID ;
pnstr8 objectName ;
} Back Link T;

Pascal

Back Link T = Record
remoteID : nuint32;
objectName : pnstr8

End;

Fields

remotelD

Identifies the reference that is valid on the server.

objectName

Identifies the server holding a reference.

434 NDK: Novell eDirectory Core Services

Bit_String_ T

Contains the optional bit string information of the Facsimile Telephone Number syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct

{
nuint32 numOfBits ;
pnuint8 data ;

} Bit String T;

Defined In

Bit String T = Record
numOfBits : nuint32;
data : pnuint8

End;

Fields

numOfBits

Specifies the number of bits in the data that are used.

data

Points to the data, formatted according to Recommendation T.30.

Structures 435

Buf T

Initializes and handles input and output buffers.
Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct
{

nuint32 operation ;
nuint32 flags ;
nuint32 maxLen ;
nuint32 curlen ;
pnuint8 lastCount ;
pnuint8 curPos ;
pnuint8 data ;
} Buf T;
Pascal
Buf T = Record
operation : nuint32;
flags : nuint32;
maxLen : nuint32;
curlLen : nuint32;
lastCount : pnuint8;
curPos : pnuint8;
data : pnuint8
End;
Fields
operation

Specifies the verb of the function operating on the buffer; set by NWDSInitBuf. The operation
determines the type of data in the buffer. For a list of operation types, see Section 5.3, “Buffer
Operation Types and Related Functions,” on page 464.

flags
Specifies the set of bit flags. Only the first bit is defined. If it is set, the buffer contains input
data. If this bit is clear, the buffer contains results:

0x0001 ($00000001) INPUT_BUFFER

maxLen

Specifies the amount of memory allocated when NWDSAllocBuf is called. This is the
maximum length of data the buffer can contain. This member is set to 0 when the buffer is
allocated.

436 NDK: Novell eDirectory Core Services

curLen
Specifies the length of the current buffer. Its value is manipulated internally by get and put
routines only. This member is set to 0 when the buffer is allocated or initialized. For an output
buffer, this member is the total bytes of data received by the client.

lastCount
Points to the number of items in the data currently stored in the buffer. It is manipulated
internally for iterative operations on the buffer.

curPos

Points to the offset in the data area where the next operation should occur. This member is set to
the start of the buffer to which the data field points when the buffer is allocated or initialized, or
when a result is returned. The "put" and "get" functions update the member. It is manipulated
internally.

data

Points to the actual data stored in the buffer.

Structures 437

Cl List T
Contains eDirectory information for the attributes that use the Case Ignore List syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct ci list

{
struct ci list N FAR *next ;
pnstr8 s ;

} CI List T;

Pascal

CI List T = Record
next : pCI List T;
s : pnstr8

End;

Fields

next

Points to the next node containing a case-ignore string.

Points to a case-ignore string for this node.

438 NDK: Novell eDirectory Core Services

Class Info T

Contains information about a object class definition.

Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct
{

nuint32 classFlags ;
AsnlID T asnlID ;
} Class_Info T;

Pascal

Class Info T = Record
classFlags : nuint32;
asnlID : AsnlID T

End;

Fields

classFlags

Specifies the type of object class (see Section 5.4, “Class Flags,” on page 465).

asnlID

Specifies an optional object identifier encoded using the ASN.1-BER rules. If no ASN.1 object
identifier has been registered for the attribute, a zero-length octet string is specified. NetWare

5.x requires an ASN.1 identifier.

Structures 439

EMail_Address T

Contains the eDirectory information for the attributes that use the EMail Address syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct

{
nuint32 type ;
pnstr8 address ;
} EMail Address_T;

Pascal

EMail Address T = Record
type : nuint32;

address : pnstr8
End;
Fields
type

Specifies the e-mail address type.

address

Points to the e-mail address, formatted according to the type field.

Remarks

The type field is specific to the e-mail application. MHS mail applications use the following types:

0 The data structure contains an e-mail address, in the form of non-MHS_Email_protcol:non-
MHS_Email_Address (non_MHS_Email_Protocol is a 1-8 character string, and the non-
MHS_Email_Address is a string for the actual address value)

1 The data structure contains an e-mail alias, in the form of non-MHS_Email_protcol:non-
MHS_Email_Alias. (non_MHS_Email_Protocol is a 1-8 character string, and the non-
MHS_Email_Alias is a string for the actual alias value)

The nwdsapi.h file defines a few e-mail address types in the EMAIL_ADDRESS TYPE
enumeration. However, e-mail applications can create new ones. eDirectory does not validate the
types or the addresses; it stores the information. The e-mail application is responsible for ensuring
that the information is stored in the syntax in a format that it can use.

440 NDK: Novell eDirectory Core Services

Fax_Number_T

Contains the eDirectory information for the attributes that use the Facsimile Telephone Number

syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

Cc

typedef struct

{
pnstr8 telephoneNumber ;
Bit String T parameters ;

} Fax Number T;

Pascal

Fax Number T = Record
telephoneNumber : pnstr8;
parameters : Bit String T

End;

Fields

telephoneNumber

Points to the next node containing a case-ignore string.

parameters

Specifies a case-ignore string for this node.

Structures 441

Filter Cursor_ T

Builds an expression tree to search for objects in eDirectory.
Service: NDS

Defined In: nwdsfilt.h and nwdsfilt.inc

Structure

c

typedef struct

{
pFilter Node T fn ;
nuintlo6 level ;
nuint32 expect ;

} Filter Cursor T;

Defined In

Filter Cursor T = Record
fn : pFilter Node T;

level : nuintlé6;
expect : nuint32
End;
Fields
fn

Points to the address of the current node structure in the expression tree.

level

Specifies the number of nodes superior to the current node plus 1.

expect

Specifies which tokens are legitimate values for the current node with a bit-map.

442 NDK: Novell eDirectory Core Services

Filter Node_ T

Builds an expression tree to search for objects in eDirectory.

Service: NDS

Defined In: nwdsfilt.h and nwdsfilt.inc

Structure

c

typedef struct

{
struct filter node N FAR
struct filter node N FAR
struct filter node N FAR
nptr
nuint32
nuintlo

} Filter Node T;

Pascal

Filter Node T = Record
parent : pFilter Node T;
left : pFilter Node T;
right : pFilter Node T;
value : nptr;
syntax : nuint32;
token : nuintlé6

End;

Fields

parent

Points to the address of the parent node. Refers to nodes in relation to the currently selected

node.

left

*parent
*left ;
*right
value
syntax
token

’

’

’

’

’

Points to the address of the left subordinate. Refers to nodes in relation to the currently selected

node.

right

Points to the address of the right subordinate. Refers to nodes in relation to the currently

selected node.

value

Points to the address of an attribute name of attribute value, if token is a value or a name.

syntax

Specifies the syntax associated with the value of token.

Structures 443

token
Specifies the type of node (see Section 5.13, “Filter Tokens,” on page 474).

If token specifies neither an attribute name (14) nor an attribute value (6), value and syntax
members are ignored.

444 NDK: Novell eDirectory Core Services

Hold_T

Contains the eDirectory information for the attributes that use the Hold syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

pnstr8 objectName ;
nuint32 amount ;

} Hold T;

Pascal

Hold T = Record
objectName : pnstr8;
amount : nuint32

End;

Fields

objectName

Points to the distinguished name of the server submitting the hold.

amount

Specifies the amount the server has requested to be held against the user’s credit limit.

Structures 445

NDSOSVersion_T

Contains the operating system version information.
Service: NDS

Defined In: nwdsmisc.h

Structure

c

typedef struct
{

nuint32 major;
nuint32 minor;
nuint32 revision;

} NDSOSVersion T, N_FAR *pNDSOSVersion T;

Fields
major
Specifies the major version number.

minor

Specifies the minor version number (the number following the period).

revision

Specifies the revision number.

This structure is used by the DSPING_OS_VERSION flag. For more information, see Section 5.19,
“eDirectory Ping Flags,” on page 479.

446 NDK: Novell eDirectory Core Services

NDSStatsIinfo T

Contains statistical information for eDirectory relative to an eDirectory server.
Service: NDS

Defined In: nwdsmisc.h and nwdsmisc.inc

Structure

c

typedef struct

{
nuint32 statsVersion ;
nuint32 noSuchEntry ;
nuint32 localEntry ;
nuint32 typeReferral ;

nuint32 aliasReferral ;
nuint32 requestCount ;
nuint32 requestDataSize ;
nuint32 replyDataSize ;
nuint32 resetTime ;

nuint32 transportReferral ;
nuint32 upReferral ;
nuint32 downReferral ;

} NDSStatsInfo T, N FAR *pNDSStatsInfo T;

Pascal

NDSStatsInfo T = Record
statsVersion : nuint32;
noSuchEntry : nuint32;
localEntry : nuint32;
typeReferral : nuint32;
aliasReferral : nuint32;
requestCount : nuint32;
requestDataSize : nuint32;
replyDataSize : nuint32;
resetTime : nuint32;
transportReferral : nuint32;
upReferral : nuint32;
downReferral : nuint32

End;

Fields

statsVersion

Specifies the supported members of the statistics structure as it is expanded.

Structures 447

noSuchEntry

Specifies the number of times name resolution resulted in not locating the entry local to this
server.

localEntry

Specifies the number of times name resolution resulted in finding the entry local to this server.

typeReferral

Specifies the number of times name resolution found a local entry, but another replica type was
requested.

aliasReferral

Specifies the number of times name resolution responded with an alias referral.

requestCount

Specifies the number of NDS requests received from a remote client (including the eDirectory
client agent used for skulking, etc.).

requestDataSize

Specifies the sum of request buffer sizes. This number is likely to wrap (overflow back to a
lower number) over time.

replyDataSize

Records the sum of reply buffer sizes. This number is likely to wrap (overflow back to a lower
number) over time.

resetTime

Specifies the last time eDirectory statistics were reset. The value consists of a whole number of
seconds since 12:00 midnight, January 1, 1970, UTC.

transportReferral

Specifies the number of times name resolution located a local entry, but the referral specified
does not have an acceptable transport type.

upReferral

Specifies the number of times name resolution was not walking the tree for the caller, and the
referral went "up" the tree.

downReferral

Specifies the number of times name resolution was not walking the tree for the caller, and the
referral went "down" the tree.

448 NDK: Novell eDirectory Core Services

Net_Address T

Contains the eDirectory information for the attributes that use the Net Address syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct

{
nuint32 addressType ;
nuint32 addressLength ;
pnuint8 address ;

} Net Address T;

Defined In

Net Address T = Record
addressType : nuint32;
addressLength : nuint32;
address : pnuint8

End;

Fields

addressType
Specifies the type of communications protocol used, such as IPX or IP. See Section 5.21,
“Network Address Types,” on page 482.

addressLength
Specifies the address length expressed in bytes. The table lists the addresses with defines.

Define Value Transport Type
IPX_ADDRESS_LEN 12 IPX
IP_ADDRESS_LEN 6 IP

address

Points to the hexadecimal address. The address field is stored as a binary string; each 4-bit
nibble must be converted to hexadecimal before it can be displayed as a hexadecimal address.

Structures 449

NWDS TimeStamp T

Contains the eDirectory information for the attributes that use the Timestamp syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

nuint32 wholeSeconds ;
nuint32 eventID ;
} NWDS TimeStamp T;

Pascal

NWDS TimeStamp T = Record
wholeSeconds : nuint32;
eventID : nuint32

End;

Fields

wholeSeconds

Specifies the value of the time stamp in whole seconds. Zero equals 12:00 a.m. (midnight),
January 1, 1970 GMT.

eventID

Specifies the replica ID and the event ID that further orders events occurring within the same
whole-second interval.

See also TimeStamp T (page 458).

450 NDK: Novell eDirectory Core Services

Object ACL_T

Contains the eDirectory information for the attributes that use the Object ACL syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

pnstr8 protectedAttrName ;
pnstr8 subjectName ;
nuint32 privileges ;

} Object ACL T;

Pascal

Object ACL T = Record
protectedAttrName : pnstr8;
subjectName : pnstr8;
privileges : nuint32

End;

Fields

protected AttrName

Points either to the name of the specific attribute to be protected or to one of the following

defines:

"[All Attributes Rights]"
"[Entry Rights]"

subjectName

DS_ALL_ATTRS_NAME
DS_ENTRY RIGHTS NAME

Points either to the name of the object receiving the rights to the protected object or to one of

the following defines:

"[Root]"

"[Public]"
"[Inheritance Mask]"
"[Creator]"

"[Self]"

DS CREATOR NAME and DS SELF NAME can be used only with NWDSAddObject.

privileges

DS_ROOT NAME
DS_PUBLIC NAME
DS_MASK_NAME
DS_CREATOR NAME
DS_SELF_NAME

Specifies a bit mask identifying specific rights (see Section 5.18, “eDirectory Access Control

Rights,” on page 477).

Structures 451

Object_Info_ T

Contains information used to maintain objects.
Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct

{
nuint32 objectFlags ;

nuint32 subordinateCount ;
time t modificationTime ;
char baseClass [MAX SCHEMA NAME BYTES+2];

} Object Info T;

Pascal

Object Info T = Record
objectFlags : nuint32;

subordinateCount : nuint32;
modificationTime : time t;
baseClass : Array [0..MAX SCHEMA NAME BYTES+1] Of char;
End;
Fields
objectFlags
Specifies the object's entry flags (see Section 5.12, “DSI_ENTRY FLAGS Values,” on
page 473).
subordinateCount

Specifies the number of objects subordinates to the object.

modificationTime

Specifies the time when the object was last modified.

baseClass

Specifies the object class used to create the object.

452 NDK: Novell eDirectory Core Services

Octet List T

Contains the eDirectory information for the attributes that use the Octet List syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct octet list
{
struct octet list N FAR
nuint32
pnuint8
} Octet List T;

Pascal

Octet List T = Record
next: pOctet List T;
length : nuint32;
data : pnuint8

End;

Fields

next

Points to the next string in the list.

length

*next;

length;

data;

Specifies the length, in bytes, of the data field.

data

Points to the data string.

Structures 453

Octet_String T

Contains the eDirectory information for the attributes that use the Octet String syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct

{
nuint32 length ;
pnuint8 data ;

} Octet String T;

Pascal

Octet String T = Record
length : nuint32;
data : pnuint8

End;

Fields

length
Specifies, in bytes, the length of the string.

data

Points to the string.

454 NDK: Novell eDirectory Core Services

Path_ T

Contains the eDirectory information for the attributes that use the Path syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

Specifies the name space of the file name (see Section 5.17, “Name Space Types,” on

nuint32 nameSpaceType ;
pnstr8 volumeName ;
pnstr8 path ;
} Path T;
Pascal
Path T = Record
nameSpaceType : nuint32;
volumeName : pnstr8;
path : pnstr8
End;
Fields
nameSpaceType
page 477).
volumeName

Points to the distinguished name of the volume.

path

Points to a file system path, formatted according to the name space.

Structures 455

Replica_Pointer_ T

Contains the eDirectory information for the attributes that use the Replica Pointer syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

pnstr8 serverName ;
nint32 replicaType ;
nint32 replicaNumber ;
nuint32 count ;

Net Address T replicaAddressHint [1];
} Replica Pointer T;

Pascal

Replica Pointer T = Record

serverName : pnstr8;

replicaType : nint32;

replicaNumber : nint32;

count : nuint32;

replicaAddressHint : Array[0..0] Of Net Address T
End;

Fields

serverName
Points to the distinguished name of the NetWare server storing the replica.
replicaType

Specifies the capabilities of this copy of the partition (see Section 5.23, “Replica Types,” on
page 483).

replicaNumber

Specifies the number of the replica.

count

Specifies the number of Net Address_T structures.

replicaAddressHint
Specifies the node at which the NetWare server probably exists.

456 NDK: Novell eDirectory Core Services

Syntax_Info T

Contains syntax information.
Service: NDS

Defined In: nwdsbuft.h and nwdsbuft.inc

Structure

c

typedef struct

{
nuint32 ID ;
nstr8 defStr [MAX SCHEMA NAME BYTES + 2];
nflaglb flags ;

} Syntax Info T;

Pascal

Syntax Info T = Record
ID : nuint32;
defStr : Array[l..MAX SCHEMA NAME BYTES+2] Of nint8;
flags : nflaglé6

End;

Fields

ID
Specifies the numeric representation of the syntax name (see Section 5.26, “Syntax IDs,” on
page 487).

defStr
Specifies the byte representation of the syntax name.

flags

Specifies the matching rules for the syntax such as equality, greater than, and less than (see
Section 5.25, “Syntax Matching Flags,” on page 486).

Structures 457

TimeStamp T

Contains the information for the functions that manipulate eDirectory time stamps.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

nuint32 wholeSeconds ;
nuintlé replicaNum ;
nuintlo eventID ;

} TimeStamp T;

Pascal

TimeStamp T = Record
wholeSeconds : nuint32;
replicaNum : nuintl6;
eventID : nuintl6

End;

Fields

wholeSeconds

Specifies the whole number of seconds, where zero equals 12:00, midnight, January 1, 1970,
UTC.

replicaNum

Specifies the number of the replica on which the event occurred.

eventID

Specifies an integer further ordering events occurring within the same whole-second interval.

Remarks

Two time stamps values are compared by using wholeSeconds first and eventID second. If
wholeSeconds are unequal, the order is determined by wholeSeconds alone. If wholeSeconds are
equal and eventID are unequal, the order is determined by eventID. If wholeSeconds and eventID
are both equal, the time stamps are equal.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero, and wholeSeconds to the
appropriate value.

This structure is used by the following functions: NWDSExtSyncList, NWDSExtSyncRead,
NWDSExtSyncSearch, and NWDSGetAttrValModTime.

458 NDK: Novell eDirectory Core Services

Typed _Name_T

Contains the eDirectory information for the attributes that use the Typed Name syntax.

Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

pnstr8 objectName ;
nuint32 level ;
nuint32 interval ;

} Typed Name T;

Pascal

Typed Name T = Record
objectName : pnstr8;

level : nuint32;
interval : nuint32
End;
Fields
objectName

Points to the distinguished name of the eDirectory object.

level

Specifies the priority of the attribute. This is a relative value assigned by the user.

interval

Specifies the frequency of reference. This is a relative value assigned by the user.

Structures 459

Unknown_Attr T

Contains the eDirectory information for the attributes that use the Unknown attribute syntax.
Service: NDS

Defined In: nwdsattr.h and nwdsattr.inc

Structure

c

typedef struct
{

pnstr8 attrName ;
nuint32 syntaxID ;
nuint32 valuelen ;
nptr value ;

} Unknown Attr T;

Pascal

Unknown Attr T = Record
attrName : pnstr8;
syntaxID : nuint32;

valuelLen : nuint32;
value : nptr

End;

Fields

attrName

Points to the attribute name.

syntaxID
Specifies the syntax used by the attribute (see Section 5.26, “Syntax IDs,” on page 487).

valueLen

Specifies the length of the data contained in the attribute.

value

Points to the attribute’s value (data).

460 NDK: Novell eDirectory Core Services

Values

This chapter defines the flags, information types, keys, and enumerated data types used by the
Novell® eDirectory™ functions.

+ Section 5.1, “Attribute Constraint Flags,” on page 461

¢ Section 5.2, “Attribute Value Flags,” on page 463

¢ Section 5.3, “Buffer Operation Types and Related Functions,” on page 464

¢ Section 5.4, “Class Flags,” on page 465

¢ Section 5.5, “Change Types for Modifying Objects,” on page 466

¢ Section 5.6, “Context Keys and Flags,” on page 467

¢ Section 5.7, “Default Context Key Values,” on page 469

¢ Section 5.8, “DCK_FLAGS Bit Values,” on page 470

¢ Section 5.9, “DCK_NAME_FORM Values,” on page 471

¢ Section 5.10, “DCK_CONFIDENCE Bit Values,” on page 471

¢ Section 5.11, “DCK_DSI _FLAGS Values,” on page 472

¢ Section 5.12, “DSI_ENTRY_ FLAGS Values,” on page 473

¢ Section 5.13, “Filter Tokens,” on page 474

¢ Section 5.14, “Information Types for Attribute Definitions,” on page 475

¢ Section 5.15, “Information Types for Class Definitions,” on page 476

¢ Section 5.16, “Information Types for Search and Read,” on page 476

¢ Section 5.17, “Name Space Types,” on page 477

¢ Section 5.18, “eDirectory Access Control Rights,” on page 477

¢ Section 5.19, “eDirectory Ping Flags,” on page 479

¢ Section 5.20, “DSP Replica Information Flags,” on page 481

¢ Section 5.21, “Network Address Types,” on page 482

¢ Section 5.22, “Scope Flags,” on page 483

¢ Section 5.23, “Replica Types,” on page 483

¢ Section 5.24, “Replica States,” on page 484

¢ Section 5.25, “Syntax Matching Flags,” on page 486

¢ Section 5.26, “Syntax IDs,” on page 487

5.1 Attribute Constraint Flags

Attribute constraint flags give the attribute certain characteristics which restrict the information that
can be stored in the data type and which constrain the operations of eDirectory and eDirectory
clients.

Values 461

Flag

C Value

Description

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_HIDDEN_ATTR

DS_STRING_ATTR

0x0001

0x0002

0x0004

0x0008

0x0010

0x0020

Indicates that the attribute has a single value, with no
order implied. If FALSE, the attribute is multi-valued.

Indicates that the attribute has an upper and lower
boundary. This can be the length for strings or the value
for integers.The first number indicates the lower
boundary and the second, the upper boundary.

If FALSE, the attribute has no length or range limits.

Prevents the attribute from being removed from the
schema:

+ In NDS version 6.xx and below, clients cannot set
this constraint flag.

+ In NDS version 7.xxx and above, clients can set
this flag when the attribute is created.

All operational attribute definitions have the
nonremovable flag set to TRUE.

If FALSE, the attribute can be removed if it hasn’t been
assigned to a class.

Prevents clients from remotely modifying the attribute.
The eDirectory server and applications running on it
create and maintain these attributes. Clients can read
the attribute's value.

If FALSE, clients can remotely modify this attribute.

In NDS version 6.xx and below, marks the attribute as
usable only by the eDirectory server.

In NDS version 7.xx and above, marks the attribute as
usable by eDirectory and the applications running on
the eDirectory server.

If FALSE, clients can see the attribute.

Labels the attribute as a string type. eDirectory sets this
constraint on all attributes that use a string for their
syntax. Naming attributes must have this constraint.

If FALSE, the attribute is not a string and cannot be
used as a naming attribute.

462 NDK: Novell eDirectory Core Services

Flag C Value

Description

DS_SYNC_IMMEDIATE 0x0040
DS_PUBLIC_READ 0x0080
DS_SERVER_READ 0x0100
DS_WRITE_MANAGED 0x0200
DS_PER_REPLICA 0x0400

DS_SCHEDULE_SYNC_NEVER 0x0800

DS_OPERATIONAL 0x1000

Forces immediate synchronization with other replicas
when the value of the attribute changes. If FALSE, the
attribute is synchronized at the next synchronization
interval.

In NetWare 5.x, all attributes in the operational schema
have this constraint except Back Link, Bindery Property,
Bindery Object Restriction, Bindery Restriction Level,
Bindery Type, Last Login Time, Last Referenced Time,
Login Time, Purge Vector, Reference, Synchronize Up
To, Timezone, Transitive Vector, Unknown, and
Unknown Base Class.

Indicates that anyone can read the attribute without
read privileges being assigned. You cannot use
inheritance masks to prevent an object from reading
attributes with this constraint.

If FALSE, eDirectory rights determine who can read the
value of the attribute.

If TRUE, eDirectory skips all rights checking, making
access to the data extremely efficient.

Indicates that Server class objects can read the attribute
even though the privilege to read has not been inherited
or explicitly granted. You cannot use inheritance masks
to restrict servers from reading attributes with this
constraint. The client cannot set or modify this
constraint flag and thus cannot modify the attribute.

Forces users to have supervisor rights to the object
before they can add or delete the object as a value for
this attribute. This flag only works on attributes which
have a DN in the syntax.

It is used on attributes such as Security Equals, Group
Membership, and Profile Membership.

Marks the attribute so that the information in the
attribute is not synchronized with other replicas. The
client cannot set or modify this constraint flag and thus
cannot modify the attribute.

Allows the attribute’s value to change without such a
change triggering synchronization. The attribute can
wait to propagate the change until the next regularly
scheduled synchronization cycle or some other event
triggers synchronization.

Indicates that eDirectory uses the attribute internally
and requires the attribute to function correctly. Also
used for LDAP compatibility.

5.2 Attribute Value Flags

The following flags indicate information about the attribute other than the attribute's value. They are

defined in the nwdsdefs.h file.

Values

463

Name C Value Description

DS_NOT_PRESENT 0x0000 Indicates that the attribute does not contain a value.
DS_NAMING 0x0001 Indicates that the attribute is a naming attribute for the
object.

DS _BASECLASS 0x0002 Indicates that the attribute is the base class of the
object.

DS _PRESENT 0x0004 Indicates that the attribute's value is present.

DS VALUE_DAMAGED 0x0008 Indicates that the value does not conform to the
attribute's defined syntax and is therefore damaged.

DS SUPERCLASS 0x0010 Indicates the attribute is a super class of the object.

DS_AUXILIARYCLASS 0x0020 Indicates the attribute is an auxiliary class of the object.

5.3 Buffer Operation Types and Related
Functions

Functions which use input buffers must allocate the buffer and then initialize it to receive its type of
information. The NWDSInitBuf function calls this the operation parameter, because it specifies the
type of operation the function using the input buffer performs. These functions are called “Related
Functions” in the table below.

The operation type is used both to initialize the buffer and to end an operation if the related function
has an iterationHandle parameter. These functions have the potential of returning more information
than can fit in an allocated output buffer. To end such an operation before the complete results have
been retrieved, call NWDSCloselteration with the operation type. This function frees the memory
and states associated with the operation. The memory and states are automatically freed when all
information is retrieved from an operation.

Operation Type C Value Related Function

DSV_READ 3 NWDSExtSyncRead (page 150)
NWDSListAttrsEffectiveRights (page 251)

NWDSRead (page 327)

DSV_COMPARE 4 NWDSCompare (page 128)
DSV_LIST 5 NWDSList (page 248)
DSV_SEARCH 6 NWDSEXxtSyncList (page 146)

NWDSExtSyncSearch (page 154)
NWDSListByClassAndName (page 254)
NWDSListContainers (page 261)
NWDSSearch (page 383)
DSV_ADD_ENTRY 7 NWDSAddObject (page 87)

464 NDK: Novell eDirectory Core Services

Operation Type C Value Related Function
DSV_MODIFY_ENTRY 9 NWDSModifyObject (page 286)
DSV_READ_ATTR_DEF 12 NWDSReadAttrDef (page 330)
DSV_DEFINE_CLASS 14 NWDSDefineClass (page 137)
DSV_READ_CLASS_DEF 15 NWDSReadClassDef (page 333)
DSV_MODIFY_CLASS_DEF 16 NWDSModifyClassDef (page 281)
DSV_LIST_CONTAINABLE_CLASSES 18 NWDSListContainableClasses (page 258)
DSV_LIST_PARTITIONS 22 NWDSListPartitions (page 264)
NWDSListPartitionsExtinfo (page 267)
DSV_SEARCH_FILTER 28 NWDSPutFilter (page 323)
DSV_READ_SYNTAXES 40 NWDSReadSyntaxes (page 348)
DSV_BACKUP_ENTRY 45 NWDSBackupObject (page 107)
DSV_RESTORE_ENTRY 46 NWDSRestoreObject (page 373)
DSV_READ REFERENCES 79 NWDSReadReferences (page 342)

5.4 Class Flags

Besides basic information about containment classes, naming attributes, mandatory and optional

attributes, and super classes, eDirectory maintains a set of flags that further define the class object.

The following table lists this set of class flags.

Flag

C Value

Comment

DS_CONTAINER_CLASS

DS_EFFECTIVE_CLASS

DS_NONREMOVABLE_CLASS

DS_AMBIGUOUS_NAMING

0x01

0x02

0x04

0x08

If TRUE, objects of the class can have
subordinates.

If TRUE, the class can be used as a base
class. If FALSE, the class is a noneffective
class which can be used as a super class of
effective classes.

If TRUE, the class definition can’t be removed
from the schema. All classes defined by the
base schema have this flag set to TRUE. For
classes that extend the schema, eDirectory
sets this flag to TRUE when an entry is created
from the class.

If TRUE, the class can’t be used as a base
class. Noneffective classes can be created with
ambiguous naming. eDirectory sets this flag
when the class is created.

Values 465

Comment

Flag C Value
DS_AMBIGUOUS_CONTAINMENT 0x10
DS_AUXILIARY_CLASS 0x20
DS_OPERATIONAL_CLASS 0x40

If TRUE, the class can’t be used as a base
class. Noneffective classes can be created with
ambiguous naming eDirectory sets this flag
when the class is created.

If TRUE, the class is an auxiliary class. The
DS_CONTAINER_CLASS and the
DS_EFFECTIVE_CLASS flags must be set to
FALSE.

This is a new flag for NDS 8.

Defined for internal eDirectory use in NDS 8
and for LDAP compatibility.

For a more detailed description of these flags, see “Object Class Flags” (NDK: Novell eDirectory

Schema Reference).

5.5 Change Types for Modifying Objects

A value can be modified by placing a combination of DS REMOVE_VALUE and

DS ADD_VALUE change records in the same request buffer. This allows the operations to be
completed with a single call to NWDSModifyObject. These change types are used with the
NWDSPutChange and NWDSPutChangeAndVal functions. The change type flags have subtle
differences. Select the flag according to the error conditions you want reported.

Change Type C Value

Description

DS_ADD_ATTRIBUTE 0x00

DS_REMOVE_ATTRIBUTE 0x01

DS_ADD_VALUE 0x02

Adds the first instance of an attribute to an object.
Adding an attribute requires the attribute name and
value. An attempt to add an already existing attribute
results in an error.

A modify operation using this flag should be preceded
by a read operation to ensure that the attribute does not
already exists.

Removes an attribute from an object. The following
conditions return errors:

¢ The attribute is not present.

* The attribute is present in the RDN.
Adds a value to an attribute. Adding values requires the
attribute name and value. Attribute values inserted in

the buffer following the change record are added to the
specified attribute.

An attempt to add a value to a nonexistent attribute
succeeds.

An attempt to add an already existing value results in
an error.

466 NDK: Novell eDirectory Core Services

Change Type C Value Description

DS_REMOVE_VALUE 0x03 Removes values from an attribute. Removing values
requires the attribute name and value. Attribute values
put in the buffer following this change record are
removed from the specified attribute.

The following conditions return errors:

+ The value is not present in the attribute

¢ The value is present in the RDN.

DS_ADDITIONAL_VALUE 0x04 Adds an additional new value to a multivalued attribute.
The following conditions return errors:

+ The attribute does not already have a value

+ The value matches an exisiting value

DS_OVERWRITE_VALUE 0x05 Modifies an attribute value without needing to remove
the old value first and then add the new value.

+ |If the attribute is single-valued, deletes the old
value, and adds the new value. If the old and new
value are the same, eDirectory updates the
value's timestamp but does not return an error.

¢ If the attribute is multivalued, adds the new value,
leaving the old values. If the new value already
exists, eDirectory updates the value's timestamp
but does not return an error.

This flag can be use to add the first value to an attribute
(single valued or multivalued).

DS_CLEAR_ATTRIBUTE 0x06 Deletes an attribute. If the attribute doesn't exist, does
not report an error.

DS_CLEAR_VALUE 0x07 Clears an attribute value. If the value does not exists,
does not report an error.

5.6 Context Keys and Flags

eDirectory context keys are used when setting and getting context handle information. They are
defined in the nwdsdc.h file. Most keys can be set with bit mask flags which modify the information
returned by a key. For an overview of how the keys and flags work together, see Section 1.1,
“Context Handles,” on page 15.

The functions for manipulating information about the NDS context are NWDSGetContext

(page 191) and NWDSSetContext (page 387). Both require a key value as a parameter, and the table
below lists the defines available for the key parameter. For the default values, see Section 5.7,
“Default Context Key Values,” on page 469.

Values

467

Key Name and C Value Data Type

Description

DCK_FLAGS 1 nuint32
DCK_CONFIDENCE 2 nuint32
DCK_NAME_CONTEXT 3 NULL terminated string

DCK_TRANSPORT_TYPE 4
DCK_REFERRAL_SCOPE 5
DCK_LAST_CONNECTION 8 NWCONN_HANDLE

DCK_LAST_SERVER_ADDRESS 9

DCK_LAST_ADDRESS_USED 10

DCK_TREE_NAME 11 NULL terminated string

DCK_DSI_FLAGS 12 nuint32

Determines how requests to
eDirectory are processed and how
data is returned (see Section 5.8,
“DCK_FLAGS Bit Values,” on
page 470).

Determines replica type when
processing requests (see

Section 5.10, “DCK_CONFIDENCE
Bit Values,” on page 471).

Contains the current location in the
eDirectory tree. For the format of the
string, see the
DCV_XLATE_STRINGS flag in
Section 5.8, “DCK_FLAGS Bit
Values,” on page 470.

Not currently used.
Not currently used.

Contains the connection handle of the
last server to which the library sent a
request. This variable is cleared when
the tree name is changed.

NLM only. Obsolete. Use
DCK_LAST_CONNECTION instead.

NLM only. Obsolete. Use
DCK_LAST_CONNECTION instead.

Contains the name of the tree in the
current context. This name must be
the literal eDirectory tree name. DNS
names or string forms of a network
address are not supported. For the
format of the string, see the
DCV_XLATE_STRINGS flag in
Section 5.8, “DCK_FLAGS Bit
Values,” on page 470.

Determines the eDirectory object
information to be returned by the
NWDSList (page 248),
NWDSReadObjectDSlInfo

(page 338), NWDSReadObjectinfo
(page 340), and NWDSSearch
(page 383) functions (see

Section 5.11, “DCK_DSI_FLAGS
Values,” on page 472).

468 NDK: Novell eDirectory Core Services

Key Name and C Value Data Type Description

DCK_NAME_FORM 13 nuint32 Determines whether eDirectory
returns distinguished names in partial
dot or slash format (see Section 5.9,
“DCK_NAME_FORM Values,” on
page 471).

DCK_NAME_CACHE_DEPTH 15 nuint32 Determines how many eDirectory
names are kept in the cache. When
the cache is full, the oldest cache
record is dropped.

Before changing the DCK_FLAGS information, first read the current flags by calling
NWDSGetContext (page 191). Use bitwise operations to change the flag(s) you want to change
while leaving the settings of the other flags unchanged. Then call the NWDSSetContext function to
set DCK_FLAGS to the desired settings.

Related Topics:

+ “Modifying the Context of the Context Handle” on page 50
+ “Reading the Context of the Context Handle” on page 51

5.7 Default Context Key Values

When a context handle is created, it is initialized to the following default values. To modify the
default values, use the NWDSGetContext (page 191) and the NWDSSetContext (page 387)
functions. To understand the default values, see Section 5.6, “Context Keys and Flags,” on
page 467.

Key Name C Value Default Value

DCK_FLAGS 1 DCV_DEREF_ALIASES | DCV_XLATE_STRINGS |
DCV_CANONICALIZE_NAMES

DCK_CONFIDENCE 2 DCV_LOW_CONF

DCK_NAME_CONTEXT 3 For client applications, the default value for the client
machine.

For the NLM platform, the bindery context.

DCK_LAST_CONNECTION 8 For client applications, the connection to the server
in the eDirectory tree that was used previously to
service eDirectory operations.

For the NLM platform, initialized to no connection.

DCK_TREE_NAME 1 For client applications, the preferred tree of the client
machine.

For the NLM platform, the tree of the local server.

DCK_DSI|_FLAGS 12 DSI_ENTRY_FLAGS | DS|_OUTPUT FIELDS |
DS|_SUBORDINATE_COUNT |
DS|_MODIFICATION_TIME | DS|_BASE_CLASS |
DSI_ENTRY_RDN | DSI_ENTRY_DN

Values 469

Key Name C Value Default Value

DCK_NAME_FORM 13 DCV_NF_PARTIAL_DOT
DCK_NAME_CACHE_DEPTH 15 5

5.8 DCK_FLAGS Bit Values

The following table lists the bit values that the DCK_FLAGS key uses. They can be ORed together
to specify the kinds of information the NWDSGetContext (page 191) or NWDSSetContext
(page 387) functions set or retrieve. They are defined in the nwdsdc.h file.

Flag Name C Value Description

DCV_DEREF_ALIASES 0x00000001L When set to one (1), deferences alias objects.
This means that information about the object
referenced by the alias, rather than alias object, is
returned.

When set to zero (0), returns information about
the Alias, rather than the object it references.

Default value: 1

DCV_XLATE_STRINGS 0x00000002L When set to one (1), translates from Unicode
strings to the local code page.

When set to zero (0), returns Unicode strings.

Array element size is byte for ASCII characters or
double-byte for Unicode characters.

Default value: 1

DCV_TYPELESS_NAMES 0x00000004L When set to one (1), returns typeless names.
When set to zero (0), returns typeful names.
Default value: 0

DCV_ASYNC_MODE 0x00000008L Reserved.

DCV_CANONICALIZE_NAMES 0x00000010L When set to one (1), the object name is appended
to the name context value to form a distinguished
name before sending a request to eDirectory.
Partial names, relative to the name context, are
returned.

When set to zero (0), no name manipulation is
performed. Applications must send eDirectory
distinguished names.

Default value: 1

470 NDK: Novell eDirectory Core Services

Flag Name C Value Description

DCV_DEREF_BASE_CLASS 0x00000040L When set to one (1), returns the base class value
of the object the alias references.

When set to zero (0), returns Alias as the base
class of Alias objects.

This flag affects List, Read, and Search
operations.

Default value: 0

DCV_DISALLOW_REFERRALS 0x00000080L When set to one (1), referrals sent by eDirectory
are not used and the current eDirectory agent
must resolve the name.

Default value: 0

DCV_ALWAYS_EVALUATE_ 0x00000100L When set to one (1), referrals are always

REFERRALS requested and evaluated evein if the current
eDirectory agent has a replica of the requested
object. Applications can set this value to always
attempt to communicate with the closest server.

Default value: 0

5.9 DCK_NAME_FORM Values

The DCK_NAME FORM values determine the format of the eDirectory names. They are defined in
the nwdsdc.h file.

Flag Name C Value Description

DCV_NF_PARTIAL_DOT 1 eDirectory returns names in partial dot form. This is the
default value.

DCV_NF_SLASH 3 eDirectory returns names in slash form.

For more information and examples of the format, see “DCK_NAME FORM Key” on page 22.

5.10 DCK_CONFIDENCE Bit Values

The following table lists the bit values that the DCK_CONFIDENCE key uses. Select one to specify
the kinds of information the NWDSGetContext (page 191) or NWDSSetContext (page 387)
functions set or retrieve. They are defined in the nwdsdc.h file.

Flag Name C Value Description

DCV_LOW_CONF 0 Allows information to be obtained from any replica. This is the
default value.

DCV_MED_CONF 1 Allows information to be obtained from any replica (same as
DCV_LOW_CONF).

DCV_HIGH_CONF 2 Requires information to be obtained from the master replica.

Values

471

511 DCK_DSI_FLAGS Values

The following table lists the flags the DCK_DSI_FLAGS key uses. They are defined in the
nwdsdc.h file. These DSI flags affect the information returned by the NWDSReadObjectInfo

(page 340), NWDSList (page 248), NWDSReadObjectDSIInfo (page 338), and NWDSGetDSIInfo
(page 199) functions.

If you remove the default flags from the context handle, the NWDSReadObjectInfo (page 340) and
NWDSGetDSIInfo (page 199) functions that follow the NWDSList (page 248) function will be
affected.

If you add flags to the context handle, you can access the additional information by calling the
NWDSReadObjectDSIInfo (page 338) function or by calling the NWDSList (page 248),
NWDSGetObjectNameAndInfo (page 217), and NWDSGetDSIInfo (page 199) functions in this
specific order.

Flag Name and C Value Data Type Description

DSI_OUTPUT_FIELDS nuint32 Specifies which requested fields of information
are actually returned. If the server cannot

0x00000001L provide one of the items requested by the DSI
flags, the server clears the corresponding bit in
the Output Fields flag. No matter which bits are
set, the order of the returned data is the same
as the requested order.

DSI_ENTRY_ID nuint32 Returns the Entry ID of the object.

0x00000002L

DSI_ENTRY_FLAGS: nuint32 Returns the type of entry. See Section 5.12,
“‘DSI_ENTRY_FLAGS Values,” on page 473.

0x00000004L

DSI_SUBORDINATE_COUNT nuint32 Returns the number of objects that are
subordinate to the specified object, or 0 if

0x00000008L unknown.

DSI_MODIFICATION_TIME nuint32 Returns when the object was lasted modified,
or 0 if unknown.

0x00000010L

DSI_MODIFICATION_TIMESTAMP Timestamp_T Returns the object’s modification timestamp, or
0 if unknown.

0x00000020L

DSI_CREATION_TIMESTAMP Timestamp_T Returns the object’s creation timestamp, or O if
unknown.

0x00000040L

DSI_PARTITION_ROOT_ID nuint32 Returns the Entry ID of the partition’s root entry.

0x00000080L

DSI_PARENT_ID nuint32 Returns the Entry ID of the object’s parent.

0x00000100L

DSI_REVISION_COUNT nuint32 Returns the number of times the object has
been modified.

0x00000200L

472 NDK: Novell eDirectory Core Services

Flag Name and C Value Data Type Description
DSI_REPLICA_TYPE nuint32 Returns the replica type:
0x00000400L ¢ 0 RT_MASTER
+ 1 RT_SECONDARY
¢+ 2 RT_READONLY
¢+ 3 RT_SUBREF
DSI_BASE_CLASS NULL Returns the base class of the object.
terminated
0x00000800L string
DSI_ENTRY_RDN NULL Returns the relative distinguished name, or
terminated partial name, of the object in the format
0x00001000L string specified by DCK_FLAGS and
DCK_NAME_FORM (see Section 5.6, “Context
Keys and Flags,” on page 467).
DSI_ENTRY_DN NULL Returns the distinguished name of the object in
terminated the format specified by the DCK_FLAGS (see
0x00002000L string Section 5.6, “Context Keys and Flags,” on
page 467). The name form is always comma
delimited (not slash delmited), regardless of the
setting for DCK_NAME_FORM.
DSI_PARTITION_ROOT_DN NULL Returns the distinguished name of the partition
terminated root in the format specified by the DCK_FLAGS
0x00004000L string and DCK_NAME_FORM (see Section 5.6,
“Context Keys and Flags,” on page 467).
DSI_PARENT_DN NULL Returns the distinguished name of the object’s
terminated parent in the format specified by the
0x00008000L string DCK_FLAGS and DCK_NAME_FORM (see
Section 5.6, “Context Keys and Flags,” on
page 467).
DSI_PURGE_TIME nuint32 For a partition object, returns the oldest purge
time.
0x00010000L
DSI_DEREFERENCE_BASE_CLASS NULL Returns the base class of the object the alias
terminated references.
0x00020000L string
DSI_REPLICA_ NUMBER nuint32 Returns the number the replica was assigned
when it was created.
0x00040000L
DSI_REPLICA_STATE nuint32 Returns the state of the replica (see

0x00080000L

Section 5.24, “Replica States,” on page 484).

5.12 DSI_ENTRY_FLAGS Values

DSI_ENTRY_FLAGS returns information about an entry’s state. The flags are defined in the
nwdsdefs.h file. The following table lists the flags that have been defined for the various entry

states.

Values

473

Flag Name C Value Description

DS_ALIAS_ENTRY 0x0001 Indicates that the entry is an alias object.

DS_PARTITION_ROOT 0x0002 Indicates that the entry is the root partition.

DS_CONTAINER_ENTRY 0x0004 Indicates that the entry is a container object and
not a container alias.

DS _CONTAINER_ALIAS 0x0008 Indicates that the entry is a container alias.

DS_MATCHES_LIST_FILTER 0x0010 Indicates that the entry matches the List filter.

DS_REFERENCE_ENTRY 0x0020 Indicates that the entry has been created as a

reference rather than an entry. The
synchronization process is still running and has
not created an entry for the object on this replica.

DS 40X_REFERENCE_ENTRY 0x0040 Indicates that the entry is a reference rather than
the object. The reference is in the older 4.0x form
and appears only when upgrading.

DS_BACKLINKED 0x0080 Indicates that the entry is being back linked.

DS NEW_ENTRY 0x0100 Indicates that the entry is new and replicas are
still being updated.

DS TEMPORARY_REFERENCE 0x0200 Indicates that an external reference has been
temporarily created for authentication; when the
object logs out, the temporary reference is

deleted.
DS_AUDITED 0x0400 Indicates that the entry is being audited.
DS_ENTRY_NOT_PRESENT 0x0800 Indicates that the state of the entry is not present.
DS _ENTRY_VERIFY_CTS 0x1000 Indicates the entry's creation timestamp needs to

be verified. eDirectory sets this flag when a
replica is removed or upgraded from NetWare
4.11 to NetWare 5.

DS_ENTRY_DAMAGED 0x2000 Indicates that the entry's information does not
conform to the standard format and is therefore
damaged.

5.13 Filter Tokens

Filter tokens are used in search expression trees for NWDSSearch and NWDSItrCreateSearch. They
are defined in the nwdsfilt.h file. For more information on creating a search expression tree, see
Section 1.4, “Search Requests,” on page 30.

Token C Value Description

FTOK_END 0 Signals the end of the search expression tree.

FTOK_OR 1 Indicates TRUE if either of the subordinate nodes
are true.

474 NDK: Novell eDirectory Core Services

Token C Value Description

FTOK_AND 2 Indicates TRUE only if both subordinate nodes are
true

FTOK_NOT 3 Indicates TRUE if the node is false

FTOK_LPAREN 4 Indicates a left parenthesis for nesting of
conditions.

FTOK_RPAREN 5 Indicates a right parenthesis for nesting of
conditions

FTOK_AVAL 6 Indicates a value follows.

FTOK_EQ 7 Indicates TRUE only if the attribute's value is equal
to the asserted value.

FTOK_GE 8 Indicates TRUE only if the attribute's value is
greater than or equal to the asserted value.

FTOK_LE 9 Indicates TRUE only if all attribute's values are less
than the asserted value.

FTOK_APPROX 10 Indicates TRUE only if the value of the attribute
matches the asserted value. If the attribute syntax
does not support approximate matching, this token
matches for equality.

FTOK_ANAME 14 Indicates a name follows.

FTOK_PRESENT 15 Indicates TRUE only if the attribute is present on
the entry.

FTOK_RDN 16 Indicates TRUE only if the entry's RDN matches the
asserted value.

FTOK_BASECLS 17 Indicates TRUE only if the entry belongs to the
asserted base class.

FTOK_MODTIME 18 Indicates TRUE only if the modification time stamp
is greater than or equal to the asserted value.

FTOK_VALTIME 19 Indicates TRUE only if the creation time stamp is

greater than or equal to the asserted value.

5.14 Information Types for Attribute Definitions

The NWDSReadAttrDef (page 330) function uses the following information types to determine
whether information is returned about the attribute names or also about attribute characteristics.

Name

C Value

Description

DS_ATTR_DEF_NAMES

DS_ATTR_DEFS

0
1

Returns only the name of the attributes

Returns the name and the characteristics of the
attributes (constraints, syntax ID, value limits, ASN.1 ID)

Values

475

5.15 Information Types for Class Definitions

The NWDSReadClassDef (page 333) function uses the following information types to determine
whether to return information about both class name and class definitions. They also determine
whether to return information about expanded class-definitions, ASN.1 IDs and default ACLs.

Name C Value Description
DS_CLASS_DEF_NAMES 0 Returns only the class names.
DS_CLASS_DEFS 1 Returns class names, class flags, and class

definitions (super classes, containment classes,
naming attributes, mandatory attributes, and optional
attributes).

DS_EXPANDED_CLASS_DEFS 2 Returns class names, class flags, class definitions,
and class definitions of the super classes.

DS_INFO_CLASS_DEFS 3 Returns class names, class flags, and ASN.1
identifiers.

DS_FULL_CLASS_DEFS 4 Returns class names, class flags, class definitions,
class definitions of the super classes, and default
ACLs.

5.16 Information Types for Search and Read

The following flags are found in the nwdsdefs.h file and specify the type of information to return.
The NWDSSearch, NWDSReadReferences, NWDSExtSyncRead, NWDSExtSyncSearch, and
NWDSItrCreateSearch functions support only the first two types: DS ATTRIBUTE _NAMES and
DS ATTRIBUTE_ VALUES. The NWDSRead function supports all of them.

All the functions that use these information types return the information to an output buffer. The
information must be retrieved from the buffer with specialized functions. All of the information
types require the use of two functions: NWDSGetAttrCount and NWDSGetAttrName. Use the
NWDSGetAttrCount to determine the number of attributes associated with the object. Use the
NWDSGetAttrName function to retrieve the name and the number of values associated with the
attribute. If only names have been requested, the number of values will always be zero. If the
information type returns additional information, you will need to use the specialized functions to
retrieve the additional information before retrieving the next attribute name.

Name C Value Description
DS_ATTRIBUTE_NAMES 0x00 Returns only the names of the attributes.
DS_ATTRIBUTE_VALUES 0x01 Returns the names and the values of the attributes.

Use the NWDSGetAttrVal function to retrieve the
values. Call this function once for each value
associated with the attribute before getting the name
of the next attribute.

If the value's size is unknown (most attributes have
known sizes), use NWDSComputeAttrValSize before
retrieving the value.

476 NDK: Novell eDirectory Core Services

Name C Value Description

DS_EFFECTIVE_PRIVILEGES 0x02 Returns the names and effective privileges of the
requester to the attributes.

DS_VALUE_INFO 0x03 Returns the attribute name, number of values, value
flags (see Section 5.2, “Attribute Value Flags,” on
page 463), timestamp, and value. Use the
NWDSGetAttrValFlags function to retrieve the
attribute value flag information. Use the
NWDSGetAttrValModTime function to retrieve the
modification timestamp for the value.

DS _ABBREVIATED_VALUE 0x04 Returns the attribute name, number of values,
attribute value flags (see Section 5.2, “Attribute
Value Flags,” on page 463), timestamp, and length of
the value. Use the NWDSGetAttrValFlags function to
retrieve the attribute value flag information. Use the
NWDSGetAttrValModTime function to retrieve the
modification timestamp.

DS_EXPANDED_CLASS 0x08 Reserved.

5.17 Name Space Types

The name space types used by the Path T (page 455) structure are listed in the

NAME SPACE TYPE typedef enumeration in the nwdsdefs.h and nwdsdefs.inc files. These values
match the standard name space types defined for the name space functions (see Name Space Flag
Values (http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/
hvxfva0i.html) (Multiple and Inter-File Services (http://developer.novell.com/ndk/doc/clib/
index.html?page=/ndk/doc/clib/cmgnxenu/data/hvxfva0i.html))).

The following table lists this set of name space flags.

Flag C Value Comment

DS_DOS 0 DOS name space

-

DS _MACINTOSH Macintosh name space

DS _UNIX 2 UNIX or NFS name space
DS_FTAM 3 FTAM name space
DS_0S2 4 0S/2, Windows 95, or Windows NT name space

5.18 eDirectory Access Control Rights

eDirectory uses two types of rights: object rights and attribute rights. The object that receives the
rights is called a trustee. Except for the Inheritance Control rights (DS_ENTRY INHERIT CTL
and DS_ATTR _INHERIT CTL), set the right in the bit mask to 1 (one) to grant the right and to 0
(zero) to deny the right. For the Inheritance Control rights, see Table 5-3 on page 479 for the correct
settings.

eDirectory uses the following rights in an ACL to grant rights to the object as a whole. These rights
are ORed together into a bit mask.

Values

477

http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/hvxfva0i.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/hvxfva0i.html
http://developer.novell.com/ndk/doc/clib/index.html?page=/ndk/doc/clib/cmgnxenu/data/hvxfva0i.html

Table 5-1 Object Rights

Flag Name C Value Description

DS_ENTRY_BROWSE 0x00000001L Allows a trustee to discover objects in the
eDirectory tree.

DS_ENTRY_ADD 0x00000002L Allows a trustee to create child objects (new
objects that are subordinate to the object in the
tree).

DS_ENTRY_DELETE 0x00000004L Allows a trustee to delete an object. This right
does not allow a trustee to delete a container
object that has subordinate objects.

DS_ENTRY_RENAME 0x00000008L Allows a trustee to rename the object.

DS_ENTRY_SUPERVISOR 0x00000010L Gives a trustee all rights to an object and its
attributes.

DS_ENTRY_INHERIT_CTL 0x00000040L Allows a trustee to inherit the rights granted in the

ACL and exercise them on subordinate objects.

For information on setting the bit values, see
Table 5-3 on page 479.

eDirectory uses the following rights in an ACL to grant rights to individual attributes and to [All
Attributes Rights] of an object. These rights are ORed together into a bit mask.

Table 5-2 Attribute Rights

Flag Name C Value Description

DS_ATTR_COMPARE 0x00000001L Allows a trustee to compare a value with an
attribute’s value. This allows the trustee to see if the
attribute contains the value without having rights to
see the value.

DS_ATTR_READ 0x00000002L Allows a trustee to read an attribute value. This right
confers the Compare right.

DS_ATTR_WRITE 0x00000004L Allows a trustee to add, delete, or modify an attribute
value. This right also gives the trustee the Self (Add
or Delete Self) right.

DS_ATTR_SELF 0x00000008L Allows a trustee to add or delete its name as an
attribute value on those attributes that take object
names as their values.

DS_ATTR_SUPERVISOR 0x00000020L Gives a trustee all rights to the object’s attributes.

DS_ATTR_INHERIT_CTL 0x00000040L Allows a trustee to inherit the rights granted in the

ACL and exercise these attribute rights on
subordinate objects.

For information on setting the bit values, see Table 5-
3 on page 479.

478 NDK: Novell eDirectory Core Services

The bit settings for the Inheritance Control rights use values that ensure compatibility with NetWare
4.x.

Table 5-3 Inheritance Control Settings

Object Right [All Attributes Rights] Specific Attribute

NetWare Version no" ENTRY INHERIT CTL DS_ATTR_INHERIT CTL DS_ATTR_INHERIT_CTL

NetWare 4.x NetWare 4.x does not NetWare 4.x does not NetWare 4.x does not
support this functionality. ~ support this functionality. ~ support this functionality.
Inheritance of object rights Inheritance of rights to [All Inheritance of ACLs to

is always supported. Attributes Rights] is always specific attributes is always
supported. blocked.
NetWare 4.x requires this
bit to be set to 0. NetWare 4.x requires this NetWare 4.x requires this
bit to be set to 0. bit to be set to 0.
NetWare 5.x NetWare 5.x supports this NetWare 5.x supports this NetWare 5.x supports this

right. Set this bit to 0 (zero) right. Set this bit to 0 (zero) right. Set this bit to 1 (one)
to allow the inheritance of to allow the inheritance of to allow the inheritance of
the rights in the ACL. the rights granted to [All the rights granted to the

o Attributes Rights]. specific attribute.
Set this bit to 1 (one) to

block the inheritance of the Set this bit to 1 (one) to Set this bit to 0 to block the
ACL rights. block the inheritance of the inheritance of the ACL
ACL rights. rights.

5.19 eDirectory Ping Flags

Since a server may not be able to reply to all the requested DSPING flags, the
DSPING_SUPPORTED_FIELDS should always be one of the flags ORed together when using the
NWDSReadNDSInfo (page 336) function.

Table 5-4 eDirectory Ping Input Values

Flag Name and C Value Data Type Meaning

DSPING_SUPPORTED_FIELDS nuint32 Specifies which requested fields of
information are actually returned. If the

0x00000001L server cannot provide one of the items

requested by the DSPING flags, the server
clears the corresponding bit in the
Supported Fields flag. No matter which bits
are set, the order of the returned data is the
same as the requested order.

DSPING_DEPTH nuint32 Returns the number of levels down from the
eDirectory tree’s root object to the server’s

0x00000002L root-most entry.

DSPING_BUILD_NUMBER nuint32 Returns the internal NDS/eDirectory version
number.

0x00000004L

Values

479

Flag Name and C Value Data Type Meaning

DSPING_FLAGS nuint32 See Table 5-5 on page 480.
0x00000008L

DSPING_VERIFICATION_FLAGS nuint32 See Table 5-6 on page 481.
0x00000010L

DSPING_LETTER_VERSION nuint32 Returns the internal eDirectory letter that

0x00000020L

DSPING_OS_VERSION
0x00000040L

DSPING_TIMESYNC_STATE
0x00000080L
DSPING_LICENSE_FLAGS
0x00000100L
DSPING_DS_TIME
0x00000200L
DSPING_SAP_NAME
0x00010000L
DSPING_TREE_NAME
0x00020000L
DSPING_OS_NAME
0x00040000L
DSPING_HARDWARE_NAME
0x00080000L
DSPING_VENDOR_NAME
0x00100000L

NDSOSVersion_T
(page 446) structure

nuint32

nuint32

NULL terminated
string

NULL terminated
string

NULL terminated
string

NULL terminated
string

NULL terminated
string

may accompany the NDS/eDirectory
version number.

Returns three nuint32 values; the first is the
major version number of the operating
system; the second, the minor version
number; the third, the revision number.

Not used.

Not used; always returns zero (0).

Returns the current UTC time of the server
(number of seconds since January 1, 1970).

Returns the name the eDirectory server is
using for SAP protocol.

Returns the name of the eDirectory tree the
server belongs to.

Returns the name of the operating system
which eDirectory is running on top of.

Returns the hardware of the server’s
machine (for example, PC compatible).

Returns the name of the company that
produced this version of the eDirectory
server. Usually, Novell, Inc.

The DSPING FLAGS can be ORed together.

Table 5-5 DSPING FLAGS Values

Flag Name C Value Meaning

DSPONG_ROOT_MOST_MASTER 0x0001 If set to one (1), the server contains the master
replica of the root-most entry.

DSPONG_TIME_SYNCHRONIZED 0x0002 If set to one (1), the time on the server is

synchronized.

480 NDK: Novell eDirectory Core Services

The DSPING_VERIFICATION_FLAGS can be ORed together.

Table 5-6 DSPING VERIFICATION FLAGS Values

Flag Name C Value Meaning

DSPING_VERIFICATION_CHECKSUM 0x00000001 If set to one (1), the server is doing IPX

L checksums.
DSPING_VERIFICATION_CRC32 0x00000002 If set to one (1), the server is doing CRC error
L checking.

5.20 DSP Replica Information Flags

The following table lists the DSP flags. These flags affect the information returned by
NWDSListPartitionsExtInfo (page 267), NWDSGetPartitionExtInfoPtr (page 222), and
NWDSGetPartitionExtInfo (page 220).

You can access the additional information by calling NWDSListPartitionsExtInfo (page 267),
NWDSGetPartitionExtInfoPtr (page 222), and NWDSGetPartitionExtInfo (page 220) in this
specific order.

If the client does not request the DSP_OUTPUT _FIELDS flag, the server must return exactly the
information requested in the DSP information flags. If the server does not support the information of
a requested flag, an error results. If the client requests the DSP_OUTPUT _FIELDS flag, the server
can skip the flags it doesn’t support, and the server informs the client of the skip by clearing the
corresponding bit in the DSP_ OUTPUT _FIELDS flag.

Flag Name and C Value Data Type Meaning

DSP_OUTPUT_FIELDS nuint32 Specifies which requested fields of
information are actually returned. If

0x00000001L the server cannot provide one of the

items requested by the DSP flags, the
server clears the corresponding bit in
the DSP_OUTPUT_FIELDS flag. The
client tests the bits in the
DSP_OUTPUT_FIELDS flag to
determine which fields are present in
the reply.

No matter which bits are set, the
order of the returned data is the same
as the requested order.

DSP_PARTITION_ID nuint32 Returns the Entry ID of the partition’s
root object on the local server.

0x00000002L

DSP_REPLICA_STATE nuint32 Returns the current state of the
replica (see Section 5.24, “Replica

0x00000004L States,” on page 484).

DSP_MODIFICATION_TIMESTAMP NWDS TimeStamp_T Returns the time and the event ID for

(page 450) structure the most recent modification to the
0x00000008L replica.

Values

481

Flag Name and C Value Data Type Meaning

DSP_PURGE_TIME nuint32 Returns the time at which all data has
been synchronized. Data, scheduled

0x00000010L for deletion, that predates this time,
can now be deleted.

DSP_LOCAL_PARTITION_ID nuint32 Returns the Entry ID of the partition.

0x00000020L
DSP_PARTITION_DN
0x00000040L

DSP_REPLICA_TYPE
0x00000080L

DSP_PARTITION_BUSY
0x00000100L

NULL terminated string

nuint32

nbool

Returns the distinguished name of
the partition. Buffer size should be
MAX_DN_BYTES.

Returns the replica’s state (see
Section 5.24, “Replica States,” on
page 484) in the high 16 bits and the
replica’s type (see Section 5.23,
“Replica Types,” on page 483) in the
low 16 bits.

Indicates whether the partition is busy
merging a tree or moving a subtree.

When set to one (1), the partition is
busy.

When set to zero (0), the partition is
not busy.

5.21 Network Address Types

The network address types are enumerated data types which are defined in the nwdsdefs.h and

nwdsdefs.inc files.

Name C Value Description

NT_IPX 0 Internet Packet Exchange (IPX) network address

NT_IP 1 Internet Protocol (IP) network address

NT_SDLC 2 Synchronous Data Link Control (SDLC) address

NT_TOKENRING_ETHERNET 3 Token ring on Ethernet MAC address

NT_OSI 4 Open Systems Interconnection (OSI) address

NT_APPLETALK 5 AppleTalk network address

NT_NETBEUI 6 NetBIOS Extended User Interface (NetBEUI)
address

NT_SOCKADDR 7 Socket address

NT_UDP 8 User Datagram Protocol (UDP) address

NT_TCP 9 Transmission Control Protocol (TCP) address

NT_UDPG6 10 User Datagram Protocol (UDP), version 6,

address

482 NDK: Novell eDirectory Core Services

Name C Value Description

NT_TCP6 11 Transmission Control Protocol (TCP), version 6,
address

NT_INTERNAL 12 Reserved

NT_URL 13 Uniform Resource Locator address (added for
NDS 8)

NT_COUNT 14 Returns the maximum number of network address
types defined.

The NT_URL address type was added so that LDAP referrals could be integrated with eDirectory
and added to eDirectory referral lists. The address conforms to the format of all other network
address types: uint32 for type, uint32 for the size in bytes of the address, and a data buffer for the
address. Since a standard URL is a string with UTF-8 characters, the LDAP server in NDS 8
converts the URL address to Unicode and stores it in eDirectory as a Unicode string. See RFC 2044,
RFC 2255, RFC 1738 for more information.

5.22 Scope Flags

The NWDSSearch, NWDSExtSynSearch, and NWDSItrCreateSearch functions use these flags.

Flag Name C Value Description
DS _SEARCH_ENTRY 0 Search applies only to the base object.
DS_SEARCH_SUBORDINATES 1 Search applies only to the immediate subordinates of

the base object.

DS_SEARCH_SUBTREE 2 Search applies to the base object and all of its
subordinates. For the NWDSItrCreateSearch
function, the search of subordinates is restricted to
the subordinates that exist on the server's replicas.

DS_SEARCH_PARTITION 3 Used only by NDS 8 and later versions. Search
applies to the base object and all of its subordinates
in the partition. If a subordinate partition exists, the
search does not continue to those objects.

5.23 Replica Types

The replica types identify the type of replica and are defined in the REPLICA TYPE typedef
enumeration in the nwdsdefs.h file. Replica type determines the types of client operations that can
be performed on the replica.

Flag Name C Value Meaning

RT_MASTER 0 Identifies this replica as the master replica of the partition.
Entries can be modified; partition operations can be
performed.

Values

483

Flag Name C Value Meaning

RT_SECONDARY 1 Identifies this replica as a secondary replica of the partition.
Secondary replicas are Read/Write replicas and entries
can be modified.

RT_READONLY 2 Identifies the replica as a Read-Only replica. Only the
eDirectory synchronization processes can modify the
information on this replica.

RT_SUBREF 3 Identifies the replica as a subordinate reference. eDirectory
automatically adds these replicas to a server when the
server does not contain replicas of all child partitions. Only
eDirectory can modify information on this replica.

5.24 Replica States

The replica states indicate the current state of the replica. NetWare 4.x and NetWare 5.x, at times,
use different states. For more information, see “Replica Transition States” (NDK: Novell eDirectory
Technical Overview).

Flag Name C Value Meaning

RS_ON 0 Indicates that the replica is fully functioning and capable of
responding to eDirectory requests.

RS_NEW_REPLICA 1 Indicates that a new replica has been added but has not
received a full download of information from the master
replica if NetWare 4.x or another replica if NetWare 5.x.

RS_DYING_REPLICA 2 Indicates that a replica of the partition is being deleted. In
NetWare 4.x, the replica stays in this state until it
synchronizes with another replica. In NetWare 5.x, indicates
that the request has been received.

RS_LOCKED 3 Indicates that the replica is locked. The move partition
operation uses this state to lock the parent partition of the
child partition that is moving.

RS_CRT_0O 4 Indicates that a partition is receiving a new master replica.
This first state indicates that the old master replica has
accepted the assignment to be a Read/Write replica.

Used only by NetWare 4.x.

RS_CRT_1 5 Indicates that a Read/Write replica has been accepted as
the new master replica and is now in the process of
informing the other replicas. Once all replicas have been
informed, the replicas will be set to RS_ON.

Used only by NetWare 4.x.

RS _TRANSITION_ON 6 Indicates that a new replica has finished receiving its
download from the master replica and is now receiving
synchronization updates from the other replicas.

Used only in NetWare 4.x.

484 NDK: Novell eDirectory Core Services

Flag Name

C Value

Meaning

RS_DEAD_REPLICA

RS_BEGIN_ADD

RS_MASTER_START

RS_MASTER_DONE

RS_FEDERATED
RS_SS 0

RS_SS_1

RS_JS_0

RS_JS_1

RS_JS 2

RS_MS_0

7

11

12

13
48

49

64

65

66

80

Indicates that the dying replica needs to synchronize with
another replica before being converted to an external
reference, if a root replica, or to a subordinate reference, if a
nonroot replica.

Used only in NetWare 5.x.

Indicates that subordinate references of the new replica are
being added.

Used only in NetWare 5.x.

Indicates that a partition is receiving a new master replica.
The replica that will be the new master replica is set to this
state.

Indicates that a partition has a new master replica. When the
new master is set to this state, it knows it is now the master
and changes its replica type to master and the old master to
Read/Write.

Reserved.

Indicates that a partition is going to split into two partitions.
In this state, other replicas of the partition are informed of
the pending split operation.

Indicates that the split partition operation has started. When
the split is finished, the state will change to RS_ON.

Indicates that two partitions are in the process of joining into
one partition. In this state, the replicas that are affected are
informed of the join operation. The master replica of the
parent and child partitions are first set to this state and then
all the replicas of the parent and child. New replicas are
added where needed.

Indicates that two partitions are in the process of joining into
one partition. This state indicates that the join operation is
waiting for the new replicas to synchronize and move to the
RS_ON state.

Indicates that two partitions are in the process of joining into
one partition. This state indicates that all the new replicas
are in the RS_ON state and that the rest of the work can be
completed.

Indicates that a subtree is being moved to another location
in the eDirectory tree. In this state, the replicas that are
affected are informed of the move request. The replicas of
the new parent partition are first set to this state, and then
the replicas of the subtree that is moving.

In NetWare 4, all move operations are completed in this
state. In NetWare 5, once all replicas have been informed of
the move request, the replicas move to the next state.

Values

485

Flag Name

C Value

Meaning

RS_MS_1

81

Indicates that a subtree is being moved to another location
in the NDS tree and that all affected replicas have been
notified. The replicas remain in this state until the move
operations are completed.

Used only in NetWare 5.x.

5.25 Syntax Matching Flags

The NWDSReadSyntaxDef (page 346) and NWDSGetSyntaxDef (page 238) functions use a
Syntax_Info T (page 457) structure to return information about syntax definitions. The structure
uses the following flags to return information about the syntax's matching rules. These flags are
ORed together when multiple flags apply to a syntax.

Flag C Value Description

DS_STRING 0x0001 Indicates that the syntax can contain string values and
therefore attributes with this syntax can be used as naming
attributes.

DS_SINGLE_VALUED 0x0002 Indicates that attributes using this syntax can have only
one value.

DS_SUPPORTS_ORDE 0x0004 Indicates that attributes using this syntax must be open to

R comparisons of less than, equal to, and greater than.

DS_SUPPORTS_EQUA 0x0008 Indicates that attributes using this syntax match for equality

L when all of the following conditions are met. The attributes’
values are identical; the attributes use the same syntax,
and the attributes' data type conforms to the syntax.

DS_IGNORE_CASE 0x0010 Indicates that attributes using this syntax ignore case
during comparisons.

DS_IGNORE_SPACE 0x0020 Indicates that attributes using this syntax ignore extra
space during comparisons.

DS_IGNORE_DASH 0x0040 Indicates that attributes using this syntax ignore dashes
during comparisons.

DS _ONLY_DIGITS 0x0080 Indicates that attributes using this syntax must support only
digits in their values.

DS ONLY_PRINTABLE 0x0100 Indicates that attributes using this syntax must support only
printable characters in their values. For a list of these
characters, see the “Printable String” syntax.

DS_SIZEABLE 0x0200 Indicates that attributes using this syntax must set upper
and lower limits to their values.

DS_BITWISE_EQUAL 0x0400 Indicates that attributes using this syntax support substring

(wildcard) and approximate matching.

486 NDK: Novell eDirectory Core Services

5.26 Syntax IDs

The Syntax IDs identify an attribute syntax definition (for more information, see “Attribute Syntax
Definitions” (NDK: Novell eDirectory Schema Reference)). The IDs are defined in the nwdsdefs.h

and nwdsdefs.inc files.

Name C Value Description

SYN_UNKNOWN 0 Stores values which are binary strings.

SYN_DIST_NAME 1 Stores values which are the names of objects in
the eDirectory tree.

SYN_CE_STRING 2 Stores values which are Unicode strings, and
these strings are case sensitive in comparison
operations.

SYN_CI_STRING 3 Stores values which are Unicode strings, and
these strings are case insensitive in comparison
operations.

SYN_PR_STRING 4 Stores values which are printable strings as
defined in CCITT X.208.

SYN_NU_STRING 5 Stores values which are numeric strings as
defined in CCITT X.208.

SYN_CI_LIST 6 Stores values which are ordered sequences of
Unicode strings, and these strings are case
insensitive in comparison operations.

SYN_BOOLEAN 7 Stores values which are either TRUE or FALSE.

SYN_INTEGER 8 Stores values which are signed numeric integers.

SYN_OCTET_STRING 9 Stores values which are binary strings.

SYN_TEL_NUMBER 10 Stores values which are telephone numbers.

SYN_FAX_NUMBER 11 Stores values which are strings that comply with
the format agreed upon for international
telephone numbers (E.123) and optional bit
strings (Recommendation T.30).

SYN_NET_ADDRESS 12 Stores values which represent network-layer
addresses in binary format.

SYN_OCTET_LIST 13 Stores values which are ordered sequences of
binary strings.

SYN_EMAIL_ADDRESS 14 Stores values which are strings of binary
information.

SYN_PATH 15 Stores values which contain the file system path
information for locating a file on a NetWare
volume.

SYN_REPLICA_POINTER 16 Stores values which are used by Replica
attributes.

SYN_OBJECT_ACL 17 Stores values which are ACL attributes.

Values

487

Name

C Value

Description

SYN_PO_ADDRESS

SYN_TIMESTAMP

SYN_CLASS_NAME

SYN_STREAM

SYN_COUNTER

SYN_BACK_LINK

SYN_TIME

SYN_TYPED_NAME

SYN_HOLD

SYN_INTERVAL

SYNTAX_COUNT

18

19

20

21

22

23

24

25

26

27

28

Stores values which are Unicode strings of postal
addresses.

Stores values which mark the time when a
particular event occurred.

Stores values which are eDirectory object class
names. These names are case sensitive in
comparison operations.

Stores values which are arbitrary binary
information.

Stores values which are incrementally modified,
signed integers. Modifications to the value are
arithmetically added to, or subtracted from, the
total.

Stores the identity of the object that requires an
external reference and the server that stores the
reference.

Stores values which are unsigned integers and
which represent time in seconds.

Stores values which have a level and an interval
associated with an object name.

Stores values which are signed integers, have a
server associated with them, and are modified
arithmetically with addition and subtraction.

Stores values which are signed numeric integers
and which also represent intervals of time.

Returns the number of syntax definitions

488 NDK: Novell eDirectory Core Services

eDirectory Example Code

This chapter provides links to example code for the common tasks that most Novell® eDirectory™
applications require.

*

Section 6.1, “Context Handle,” on page 489
Section 6.2, “Object and Attribute,” on page 489

*

*

Section 6.3, “Browsing and Searching,” on page 489
Section 6.4, “Batch Modification of Objects and Attributes,” on page 490

*

*

Section 6.5, “Schema,” on page 490

6.1 Context Handle

Every function has a parameter for a context handle. The NDSCONTX file shows how to create a
context handle and displays some of its settings. For source code, see ndscontx.c (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndscontx/NDSCONTX.C.html).

6.2 Object and Attribute

The following examples show how to add, delete, and modify a single object and its attributes:
¢+ NDSADDI1—adds a User object. For source code, see ndsaddl.c (http://developer.novell.com/
ndk/doc/samplecode/ndslib_sample/ndsadd1/NDSADD1.C.html).

¢+ DELUSER—deletes a User object. For source code, see deluser.c (http://developer.novell.com/
ndk/doc/samplecode/ndslib_sample/deluser/DELUSER.C.html).

+ NDSMODOB—modifies an attribute of a User object. For source code, see ndsmodob.c (http:/
/developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsmodob/NDSMODOB.C.html).

6.3 Browsing and Searching

The following examples show how to browse and search the eDirectory tree for various types of
information:

+ NDSBROWS—lists the objects in an eDirectory container. For source code, see ndsbrows.c
(http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsbrows/
NDSBROWS.C.html).

¢ LISTPART—lists the partitions on a specified server. For source code, see listpart.c (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/listpart/LISTPART.C.html).

+ NDSREADA-—reads attributes of a specified User object. For source code, see ndsreada.c
(http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsreada/
NDSREADA.C.html).

¢ READACL—reads the ACL attribute of an object. For source code, see readacl.c (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/readacl/readacl.c.html).

eDirectory Example Code 489

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndscontx/NDSCONTX.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsadd1/NDSADD1.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/deluser/DELUSER.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsmodob/NDSMODOB.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsbrows/NDSBROWS.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/listpart/LISTPART.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndsreada/NDSREADA.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/readacl/readacl.c.html

¢+ READEFF—reads the rights one eDirectory object has to another eDirectory object. For source
code, see readeff.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/readeft/
readeff.c.html).

¢+ READINFO—reads non-attribute information that eDirectory maintains about an object such
as the object's base class, modification time, and entry flags that indicate such items as whether
the object is a container, a partition, or an alias. For source code, see readinfo.c (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/readinfo/readinfo.c.html).

+ NDSSEARCH—searches for objects of a specified class in a specified container and its
subordinates. For source code, see ndssearc.c (http://developer.novell.com/ndk/doc/
samplecode/ndslib_sample/ndssearc/NDSSEARC.C.html).

6.4 Batch Modification of Objects and Attributes

The following files work together to show how to read information from the eDirectory database
and store it in a file, modify attribute information in the file, and then apply to the changes to the
eDirectory database.

¢+ DSEXTSNC—searches the database, returns the object and attributes that match the search
filter, and writes the information to a file. For source code, see dsextsnc (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/syncds/dsextsnc.c.html).

+ READDB—reads the information from the file, displays it so the user can change it, and saves
the changes to the file. For source code, see readdb.c (http://developer.novell.com/ndk/doc/
samplecode/ndslib_sample/syncds/readdb.c.html).

¢ DSINSYNC—reads the information in the file and modifies the eDirectory database to match
the modifications in the file. For source code, see dsinsync.c (http://developer.novell.com/ndk/
doc/samplecode/ndslib_sample/syncds/dsinsync.c.html).

6.5 Schema

The following examples show how to read, modify, and create schema definitions:

¢+ CRCLSDEF—-creates a new object class definition. For source code, see crclsdef (http://
developer.novell.com/ndk/doc/samplecode/ndslib_sample/crclsdef/CRCLSDEF.C.html).

¢+ RDATTDEF—reads the attribute definition of a specified attribute. For source code, see
rdattdef (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/rdattdef/
RDATTDEF.C.html).

+ RDCLSDEF—lists all the object class definitions that exist in the schema. For source code, see
rdclsdef.c (http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/rdclsdef/
RDCLSDEF.C.html).

490 NDK: Novell eDirectory Core Services

http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/readeff/readeff.c.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/readinfo/readinfo.c.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/ndssearc/NDSSEARC.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/syncds/dsextsnc.c.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/syncds/readdb.c.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/syncds/dsinsync.c.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/crclsdef/CRCLSDEF.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/rdattdef/RDATTDEF.C.html
http://developer.novell.com/ndk/doc/samplecode/ndslib_sample/rdclsdef/RDCLSDEF.C.html

Revision History

The following table lists all changes made to the eDirectory™ Core Services documentation:

June 2008 Fixed a typo in the Pascal function name of NWDSLoginEx (page 272).

February 2008 To accommodate 64-bit platforms, changed the data type of the iteration handle
from pnint32 to pnint_ptr. The typedefs from ntypes.h handles this change for
backwards compatibility with older 32-bit applications.

October 11, 2006 Added an explanation to NWIsDSAuthenticated (page 419) about it being obsolete
and the functions to call instead. Also added the Remarks section that explains
how the function works on NetWare® and Windows.

Added note about 0 results being returned if none of the alternate replicas can be
contacted to the Remarks section of NWDSSearch (page 383).

Added that DS_SEARCH_PARTITION works with NDS 8 and later versions in
Section 5.22, “Scope Flags,” on page 483.

Updated the description of DSI_ENTRY_DN in Section 5.11, “DCK_DSI_FLAGS
Values,” on page 472.

March 1, 2006 Added some clarification to the DCK_TREE_NAME description in Section 5.6,
“Context Keys and Flags,” on page 467.

Added navigational links.

October 5, 2005 Transitioned to revised Novell documentation standards.

October 2004 Added more information on NWDSVerifyPwdEx (page 406).

February 2004 Changed NDS to eDirectory.

March 2003 + Updated optionsFlag parameter of NWDSGenerateKeyPairEx (page 164)

and NWDSChangeObjectPassword (page 116) with correct options.

+ Clarified NWDSLogout (page 275) to state that the rigts associated with
server attachments and session connections are lost while the connection
remains intact.

May 2002 Updated the Pascal syntax of Syntax_Info_T (page 457).
September 2001 Updated the pascal syntax for the following functions:

* NWDSPutClassName (page 321)
+ NWDSPutSyntaxName (page 325)
* NWDSScanConnsForTrees (page 379)

July 2000 Added information to the NWDSReadNDSInfo and NWDSGetDSVerInfo functions
and clarified the use of the changeType flags for modifying objects.

Revision History 491

	NDK: Novell eDirectory Core Services
	About This Guide
	1 Programming Concepts
	1.1 Context Handles
	1.1.1 Management of Context Handles
	1.1.2 Modification of Context Handle Settings
	1.1.3 DCK_FLAGS Key
	1.1.4 DCK_CONFIDENCE Key
	1.1.5 DCK_NAME_CONTEXT Key
	1.1.6 DCK_LAST_CONNECTION Key
	1.1.7 DCK_TREE_NAME Key
	1.1.8 DCK_DSI_FLAGS Key
	1.1.9 DCK_NAME_FORM Key
	1.1.10 DCK_NAME_CACHE_DEPTH Key
	1.1.11 Multi-Threaded Applications

	1.2 Buffer Management
	1.2.1 Buffer Size in eDirectory
	1.2.2 Initialization Operations for eDirectory Input Buffers
	1.2.3 eDirectory Buffer Allocation and Initialization Functions
	1.2.4 eDirectory Input Buffer Functions
	1.2.5 eDirectory Output Buffer Functions

	1.3 Read Requests for Object Information
	1.3.1 eDirectory List Operations
	1.3.2 Controlling Iterations
	1.3.3 Retrieving Object Information from the Output Buffer
	1.3.4 eDirectory Read Operations
	1.3.5 Configuring Results
	1.3.6 Attribute Value Comparisons

	1.4 Search Requests
	1.4.1 Buffers Needed for eDirectory Searches
	1.4.2 Search Filter Components
	1.4.3 Sample Search Expression Trees
	1.4.4 Retrieving Information from the Result Buffer
	1.4.5 Search Cleanup

	1.5 Developing in a Loosely Consistent Environment
	1.5.1 Loose Consistency
	1.5.2 Disappearing eDirectory Objects
	1.5.3 Disappearing eDirectory Objects: Solutions

	1.6 Add Object Requests
	1.7 eDirectory Security and Applications
	1.8 Authentication of Client Applications
	1.9 Multiple Tree Support
	1.9.1 NLM Applications and Multiple Tree Identities
	1.9.2 Client Applications and Multiple Tree Identities

	1.10 Effective Rights Function
	1.11 Partition Functions
	1.12 Replica Functions
	1.13 Read Requests for Schema Information
	1.14 Schema Extension Requests
	1.14.1 Attribute Definition Functions
	1.14.2 Class Definition Functions

	2 Tasks
	2.1 Context Handle Tasks
	2.1.1 Creating a Context Handle
	2.1.2 Freeing a Context Handle
	2.1.3 Modifying the Context of the Context Handle
	2.1.4 Reading the Context of the Context Handle

	2.2 Buffer Tasks
	2.2.1 Preparing eDirectory Input Buffers
	2.2.2 Preparing eDirectory Output Buffers
	2.2.3 Retrieving Results from eDirectory Output Buffers
	2.2.4 Freeing eDirectory Buffers

	2.3 Authentication and Connection Tasks
	2.3.1 Accessing eDirectory Ping Information
	2.3.2 Authenticating to eDirectory
	2.3.3 Establishing Identities to Multiple eDirectory Trees—NLM Platform
	2.3.4 Establishing Identities to Multiple eDirectory Trees— Client Platforms
	2.3.5 Retrieving Addresses of a Connected Server

	2.4 Object Tasks
	2.4.1 Adding an eDirectory Object
	2.4.2 Comparing Attribute Values
	2.4.3 Deleting an eDirectory Object
	2.4.4 Determining the Effective Rights of an Object
	2.4.5 Finding the Host Server of an Object
	2.4.6 Listing Objects in an eDirectory Container
	2.4.7 Modifying an eDirectory Object
	2.4.8 Adding an Auxiliary Class to an eDirectory Object
	2.4.9 Reading Attributes of eDirectory Objects
	2.4.10 Searching eDirectory

	2.5 Partition and Replica Tasks
	2.5.1 Adding a Replica
	2.5.2 Changing the Type of a Replica
	2.5.3 Joining Partitions
	2.5.4 Listing Partitions and Retrieving Partition Information
	2.5.5 Removing Partitions
	2.5.6 Removing Replicas
	2.5.7 Splitting Partitions

	2.6 Schema Tasks
	2.6.1 Creating a Class Definition
	2.6.2 Creating an Attribute Definition
	2.6.3 Deleting a Class Definition
	2.6.4 Deleting an Attribute Definition
	2.6.5 Listing Containable Classes
	2.6.6 Modifying a Class Definition
	2.6.7 Reading a Class Definition
	2.6.8 Reading an Attribute Definition
	2.6.9 Retrieving Syntax Names and Definitions

	3 Functions
	NWDSAbbreviateNameConverts an NDS name (including the naming attributes) to its shortest form relative to a specified name context.
	NWDSAbortPartitionOperationAborts a partition operation in progress.
	NWDSAddFilterTokenAdds a node to the search filter expression tree.
	NWDSAddObjectAdds an object to the eDirectory tree.
	NWDSAddPartition (obsolete—moved from .h file 11/99)
	NWDSAddReplicaAdds a replica of an existing eDirectory partition to a server.
	NWDSAddSecurityEquivAdds to the specified object’s security equivalence.
	NWDSAllocBufAllocates a Buf_T structure for use as a request or result buffer parameter to an eDirectory function.
	NWDSAllocFilterAllocates a filter expression tree and initializes a cursor to the current insertion point.
	NWDSAuditGetObjectID (obsolete 06/03)Returns a connection handle and an object ID for the object name, but is now obsolete.
	NWDSAuthenticate (obsolete 06/03)Establishes an authenticated connection to a secured NetWare server using the unauthenticated connection and local data cached by calling NWDSLogin, but is now obsolete.
	NWDSAuthenticateConnAuthenticates and licenses an established connection to a NetWare server.
	NWDSAuthenticateConnExAuthenticates, but does not license, an established connection to a NetWare server.
	NWDSBackupObjectBacks up the attribute names and values for an object.
	NWDSBeginClassItemBegins a class item definition (which is a part of an object class definition) in a request buffer to be used by a eDirectory Schema function.
	NWDSCanDSAuthenticateDetermines if eDirectory credentials exist for the specified tree name.
	NWDSCanonicalizeNameConverts an abbreviated name to the canonical form.
	NWDSChangeObjectPasswordChanges the authentication password for an eDirectory object once a public/private key pair has been assigned. Does not support international or extended characters in passwords.
	NWDSChangePwdExChanges the authentication password for an eDirectory object once a public/private key pair has been assigned. Supports international and extended characters in passwords.
	NWDSChangeReplicaTypeChanges the replica type of a given replica on a given server.
	NWDSCIStringsMatchTests two case ignore strings (defined by CI_String_T) to determine if the two strings are equivalent.
	NWDSCloseIterationFrees memory associated with an iteration handle in the event the client chooses to discontinue iterative calls to the server.
	NWDSCompareCompares an object’s attribute value with a specified value.
	NWDSComputeAttrValSizeComputes, in conjunction with NWDSGetAttrVal, the size of the attribute value at the current position in the result buffer.
	NWDSCreateContext (obsolete—moved from .h file 6/99)
	NWDSCreateContextHandleCreates a new context handle and initializes it with default values.
	NWDSDefineAttrAdds a new attribute definition to the eDirectory schema.
	NWDSDefineClassAdds a new object class definition to the eDirectory schema.
	NWDSDelFilterTokenDeletes the most recently added token from a filter expression tree.
	NWDSDuplicateContext (obsolete 03/99)
	NWDSDuplicateContextHandleAllocates memory for a new context structure and initializes it with values copied from the source context structure.
	NWDSExtSyncListLists the immediate subordinates for an eDirectory object and places restrictions on the subordinate's names, classes, modification times, and object types.
	NWDSExtSyncReadReads values from one or more of an eDirectory object’s attributes and places restrictions on the attributes' modification time.
	NWDSExtSyncSearchSearches a region of the eDirectory tree for objects satisfying a set of specified requirements, including modification time.
	NWDSFreeBufFrees a buffer allocated by the NWDSAllocBuf function.
	NWDSFreeContextFrees a previously allocated NDS context.
	NWDSFreeFilterFrees the area allocated to a search filter expression tree.
	NWDSGenerateKeyPairExCreates or changes a public/private key pair for a specified object. Supports international and extended characters in passwords.
	NWDSGenerateObjectKeyPairCreates or changes a public/private key pair for a specified object. Does not support international or extended characters in passwords.
	NWDSGetAttrCountReturns the number of attributes whose information is stored in a result buffer.
	NWDSGetAttrDefReturns the next eDirectory Schema attribute definition from a result buffer.
	NWDSGetAttrNameRetrieves the name of the attribute whose information is stored at the current position in a result buffer.
	NWDSGetAttrValReturns the next attribute value in a result buffer.
	NWDSGetAttrValFlagsReturns the attribute value flags for the next attribute value in a result buffer.
	NWDSGetAttrValModTimeReturns the modification timestamp for the next attribute value in a result buffer.
	NWDSGetBinderyContextReturns the setting of the bindery context set on the server identified by connHandle.
	NWDSGetClassDefRetrieves an object-class definition from a result buffer.
	NWDSGetClassDefCountReturns the number of object-class definitions stored in a result buffer.
	NWDSGetClassItemReturns the name of the next object class item stored in a result buffer.
	NWDSGetClassItemCountReturns the number of object class definition items associated with a result buffer’s current object class definition list in a result buffer.
	NWDSGetContextReturns information about an NDS context handle.
	NWDSGetCountByClassAndNameCounts the immediate subordinates of an eDirectory object, restricting the count to objects of a specified object class, with a specific name, or both.
	NWDSGetCurrentUserReturns the handle of an eDirectory user.
	NWDSGetDefNameContextRetrieves the default name context for a specified tree.
	NWDSGetDSIInfoReturns DSI object information not stored in the attributes of an object.
	NWDSGetDSVerInfoReturns NDS/eDirectory version information.
	NWDSGetEffectiveRightsReturns a summary of a subject’s rights with respect to operations on a specified object or an attribute of an object.
	NWDSGetMonitoredConnRefRetrieves a monitored connection reference.
	NWDSGetNDSInfoRetrieves NDSPING information.
	NWDSGetObjectCountReturns the number of objects whose information is stored in a result buffer.
	NWDSGetObjectHostServerAddressReturns the addresses of the server where an object is located.
	NWDSGetObjectNameReturns the name and information about the next object whose information is stored in a result buffer.
	NWDSGetObjectNameAndInfoReturns the name and information about the next object whose information is stored in a result buffer.
	NWDSGetPartitionExtInfoRetrieves replica information from a result buffer filled by the NWDSListPartitionsExtInfo function.
	NWDSGetPartitionExtInfoPtrRetrieves a pointer to the replica information from a result buffer filled by the NWDSListPartitionsExtInfo function.
	NWDSGetPartitionInfoRetrieves replica information from a result buffer filled by NWDSListPartitions.
	NWDSGetPartitionRootReturns the partition root name of the given object.
	NWDSGetServerAddresses (obsolete 3/98)
	NWDSGetServerAddresses2Returns the network addresses of the server associated with a connection handle.
	NWDSGetServerDNReturns the server’s distinguished name.
	NWDSGetServerNameReturns the name of the current server, as well as the number of partitions on the server, from a result buffer.
	NWDSGetSyntaxCountReturns the number of eDirectory syntaxes whose information is stored in a result buffer filled by NWDSReadSyntaxes.
	NWDSGetSyntaxDefRetrieves the next eDirectory-syntax definition from a result buffer filled by NWDSReadSyntaxes.
	NWDSGetSyntaxIDReturns the syntax ID of a given attribute.
	NWDSInitBufInitializes a buffer for use as a request buffer for an eDirectory function.
	NWDSInspectEntryInspects an object for correctness.
	NWDSJoinPartitionsJoins a subordinate partition to its parent partition.
	NWDSListLists the immediate subordinates of an object.
	NWDSListAttrsEffectiveRightsReturns an object’s effective privileges on another object.
	NWDSListByClassAndNameLists the immediate subordinates for an eDirectory object and restricts the list to subordinate objects matching a specified object class and/or name.
	NWDSListContainableClassesReturns the names of the object classes that can be contained by (subordinate to) the specified object in the eDirectory tree.
	NWDSListContainersLists container objects subordinate to a specific eDirectory object.
	NWDSListPartitionsReturns information about the replicas of partitions stored on the specified server.
	NWDSListPartitionsExtInfoReturns extended information about the replicas stored on the specified server.
	NWDSLoginPerforms all authentication operations needed to establish a client’s connection to the network and to the network’s authentication service. Does not support international or extended characters in passwords.
	NWDSLoginExPerforms all authentication operations needed to establish a client’s connection to the network and to the network’s authentication service. Supports international and extended characters in passwords.
	NWDSLoginAsServerAllows an NLM application to log in to eDirectory as if it were the NCP Server object.
	NWDSLogoutTerminates a client’s connection to the network and invalidates any information cached locally by NWDSLogin.
	NWDSMapIDToNameReturns the directory name for an object denoted by a connection handle and an object ID.
	NWDSMapNameToIDReturns the object ID for an eDirectory object on a specified server.
	NWDSModifyClassDefModifies an existing object class definition.
	NWDSModifyDNChanges the distinguished name of an object or its alias in the eDirectory tree.
	NWDSModifyObjectModifies an object or its alias.
	NWDSModifyRDNChanges the naming attribute of an eDirectory object or its alias in the eDirectory tree.
	NWDSMoveObjectMoves an eDirectory object from one container to another and/or renames the object.
	NWDSMutateObjectMutates the specified entry from its current object class to the specified class.
	NWDSOpenConnToNDSServerLocates a connection to a specific server.
	NWDSOpenMonitoredConnOpens a connection handle to a monitored connection.
	NWDSOpenStreamBegins access to an attribute of type SYN_STREAM.
	NWDSPartitionReceiveAllUpdatesChanges the state of the partition so all servers holding a replica will send entire partition information to the specified partition.
	NWDSPartitionSendAllUpdatesTells the specified partition to send full updates to any server holding a replica of the partition.
	NWDSPutAttrNameStores an attribute name in a request buffer to be used by an eDirectory function.
	NWDSPutAttrNameAndValStores an attribute name and value in a request buffer to be used by an eDirectory function.
	NWDSPutAttrValStores an attribute value in a request buffer to be used by an eDirectory function.
	NWDSPutChangeStores a change record in a request buffer to be used by NWDSModifyObject.
	NWDSPutChangeAndValStores a change record and attribute value in a request buffer to be used by NWDSModifyObject.
	NWDSPutClassItemStores a class name or attribute name in a request buffer to be used by an eDirectory schema function.
	NWDSPutClassNameStores a class name in a request buffer to be used by an eDirectory function.
	NWDSPutFilterPrepares a search filter expression tree in a request buffer so it can be used in a call to NWDSSearch.
	NWDSPutSyntaxNameStores a syntax name in a request buffer to be used by a eDirectory function.
	NWDSReadReads values from one or more of the specified object’s attributes.
	NWDSReadAttrDefRetrieves information about eDirectory schema attribute definitions.
	NWDSReadClassDefRetrieves information about eDirectory schema object class definitions.
	NWDSReadNDSInfoReads NDSPING information into a buffer for retrieval.
	NWDSReadObjectDSIInfoReturns the DSI object information not stored in the attributes of an object.
	NWDSReadObjectInfoReturns object information not stored in the attributes of the object.
	NWDSReadReferencesReturns information about the references of the specified object.
	NWDSReadSyntaxDefReturns the syntax definition for a given eDirectory syntax identifier.
	NWDSReadSyntaxesEnumerates syntax definitions or retrieves specific eDirectory schema syntax definitions.
	NWDSReloadDSRequests a specified server to unload and then load the DS NLM.
	NWDSRemoveAllTypesRemoves all attribute types from a distinguished name.
	NWDSRemoveAttrDefDeletes an attribute definition from the eDirectory schema.
	NWDSRemoveClassDefDeletes a class definition from the eDirectory schema.
	NWDSRemoveObjectRemoves a leaf object (either an object or an alias) from the eDirectory tree.
	NWDSRemovePartitionRemoves an existing partition from eDirectory by deleting its master replica.
	NWDSRemoveReplicaRemoves a replica from the replica set of an eDirectory partition.
	NWDSRemSecurityEquivRemoves a security equivalence from the specified object.
	NWDSRepairTimeStampsSets the time stamps for all of a partition’s objects and their attributes to the current time on the NetWare server where the master replica is located.
	NWDSReplaceAttrNameAbbrevReplaces the abbreviated attribute name with its unabbreviated name.
	NWDSResolveNameReturns a connection handle and an object ID for the object name.
	NWDSRestoreObjectRestores an object’s attribute names and values that were saved by calling NWDSBackupObject.
	NWDSReturnBlockOfAvailableTreesScans the bindery of the specified connection and returns matching tree objects.
	NWDSScanConnsForTreesScans existing connections for tree names.
	NWDSScanForAvailableTreesScans a connection for tree objects.
	NWDSSearchSearches a branch of the eDirectory tree for objects satisfying a specified set of requirements.
	NWDSSetContextSets the information in an NDS context handle.
	NWDSSetCurrentUserSets the user handle of an eDirectory user.
	NWDSSetDefNameContextSets the default name context for a specified tree.
	NWDSSetMonitoredConnection (obsolete 06/03)Tracks the connection, but is now obsolete.
	NWDSSplitPartitionDivides a partition into two partitions at a specified object.
	NWDSSyncPartitionSignals the skulker to schedule an update of a specified partition a specified number of seconds into the future.
	NWDSSyncReplicaToServerRequests a replica to synchronize with a specific server.
	NWDSSyncSchemaSignals the skulker to schedule an update of the schema a specified number of seconds in the future.
	NWDSUnlockConnection (obsolete 06/03)Enables the connection to be placed on the LRU list and unlicenses the connection if no other resources are allocated, but is now obsolete.
	NWDSVerifyObjectPasswordVerifies the password of an object. Does not support international or extended characters in passwords.
	NWDSVerifyPwdExVerifies the password of an object. Supports international and extended characters in passwords. NWDSVerifyPwdEx was not implemented in the old NLMs so you might not find it if you are using an old netnlm32.
	NWDSWhoAmIReturns the name of the object currently logged in to eDirectory.
	NWGetDefaultNameContextAllows the user to get the default name context.
	NWGetFileServerUTCTimeReturns the Coordinated Universal Time (UTC) setting of a server.
	NWGetNumConnectionsReturns the number of connections that can be supported by VLM.
	NWGetNWNetVersionReturns the NWNet library version number.
	NWGetPreferredConnNameGets the name of the preferred connection.
	NWIsDSAuthenticated
	NWIsDSServerChecks presence or absence of eDirectory on the server.
	NWNetInitDoes the initial setup that is necessary before calling any other eDirectory functions.
	NWNetTermShuts down and cleans up after the eDirectory library.
	NWSetDefaultNameContextSets the default name context.
	NWSetPreferredDSTreeSets the preferred eDirectory tree name in the requester’s tables.

	4 Structures
	Asn1ID_THolds the ASN.1 ID of an object.
	Attr_Info_TContains information about an attribute definition.
	Back_Link_TContains eDirectory information for the attributes which use the Back Link syntax.
	Bit_String_TContains the optional bit string information of the Facsimile Telephone Number syntax.
	Buf_TInitializes and handles input and output buffers.
	CI_List_TContains eDirectory information for the attributes that use the Case Ignore List syntax.
	Class_Info_TContains information about a object class definition.
	EMail_Address_TContains the eDirectory information for the attributes that use the EMail Address syntax.
	Fax_Number_TContains the eDirectory information for the attributes that use the Facsimile Telephone Number syntax.
	Filter_Cursor_TBuilds an expression tree to search for objects in eDirectory.
	Filter_Node_TBuilds an expression tree to search for objects in eDirectory.
	Hold_TContains the eDirectory information for the attributes that use the Hold syntax.
	NDSOSVersion_TContains the operating system version information.
	NDSStatsInfo_TContains statistical information for eDirectory relative to an eDirectory server.
	Net_Address_TContains the eDirectory information for the attributes that use the Net Address syntax.
	NWDS_TimeStamp_TContains the eDirectory information for the attributes that use the Timestamp syntax.
	Object_ACL_TContains the eDirectory information for the attributes that use the Object ACL syntax.
	Object_Info_TContains information used to maintain objects.
	Octet_List_TContains the eDirectory information for the attributes that use the Octet List syntax.
	Octet_String_TContains the eDirectory information for the attributes that use the Octet String syntax.
	Path_TContains the eDirectory information for the attributes that use the Path syntax.
	Replica_Pointer_TContains the eDirectory information for the attributes that use the Replica Pointer syntax.
	Syntax_Info_TContains syntax information.
	TimeStamp_TContains the information for the functions that manipulate eDirectory time stamps.
	Typed_Name_TContains the eDirectory information for the attributes that use the Typed Name syntax.
	Unknown_Attr_TContains the eDirectory information for the attributes that use the Unknown attribute syntax.

	5 Values
	5.1 Attribute Constraint Flags
	5.2 Attribute Value Flags
	5.3 Buffer Operation Types and Related Functions
	5.4 Class Flags
	5.5 Change Types for Modifying Objects
	5.6 Context Keys and Flags
	5.7 Default Context Key Values
	5.8 DCK_FLAGS Bit Values
	5.9 DCK_NAME_FORM Values
	5.10 DCK_CONFIDENCE Bit Values
	5.11 DCK_DSI_FLAGS Values
	5.12 DSI_ENTRY_FLAGS Values
	5.13 Filter Tokens
	5.14 Information Types for Attribute Definitions
	5.15 Information Types for Class Definitions
	5.16 Information Types for Search and Read
	5.17 Name Space Types
	5.18 eDirectory Access Control Rights
	5.19 eDirectory Ping Flags
	5.20 DSP Replica Information Flags
	5.21 Network Address Types
	5.22 Scope Flags
	5.23 Replica Types
	5.24 Replica States
	5.25 Syntax Matching Flags
	5.26 Syntax IDs

	6 eDirectory Example Code
	6.1 Context Handle
	6.2 Object and Attribute
	6.3 Browsing and Searching
	6.4 Batch Modification of Objects and Attributes
	6.5 Schema

	A Revision History

