AUTHORIZED DOCUMENTATION

LDAP Libraries for C

Novell.
Developer Kit

July 31, 2008

www.novell.com

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more
information on exporting Novell software, see the Novell International Trade Services Web page (http://
www.novell.com/info/exports/). Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at Novell Legal Patents (http://www.novell.com/company/legal/patents/) and one or more additional
patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see Novell Developer Kit (http://developer.novell.com/wiki/index.php/
Category:Novell_Developer_Kit). To access online documentation for Novell products, see Novell
Documentation (http://www.novell.com/documentation/).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://developer.novell.com/wiki/index.php/Category:Novell_Developer_Kit
http://www.novell.com/documentation/
http://www.novell.com/documentation/

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

Preface 13
1 Concepts 15
1.1 Getting Started. 15
1.11 Dependencies 16

1.1.2 Platform Libraries and Header Files 16

1.1.3 Supported Platforms 17

1.1.4 Supported Compilers. 18

115 Tutorials. . ..o 18

116 Sample Code.o 18

1.2 Usingthe LDAP Functions. 18
1.2.1 Using Dynamic Memory with LDAP Functions 19

1.2.2 Selecting a Function for an LDAP Operation. 21

1.2.3 Using Asynchronous or Synchronous Functions. 21

124 Initializing a Session with LDAP v3 22

1.2.5 Setting Initial Connection Timeout. 22

1.2.6 Setting and Getting the Cipher Level. i i .. 23

1.2.7 LDAP URLS . . .o 23

1.28 Threads e 24

1.29 Internationalization. 25

1.3 Authentication and Security 26
1.3.1 Setting Up SSL Security 26

1.3.2 Authentication 28

1.3.3 SSLCertificates. 31

1.3.4 Transport Layer Security 33

1.3.5 Recommendations. 33

1.4 LDAP Searches e 34
1.4.1 Setting the Search Parameters and Search Constraints. 34

142 UsingSearch Filters e 37

1.4.3 Operational Attributes 39

1.5 LDAPBased Backup e 39
1.6 Referral Handling in LDAP V3 40
1.6.1 Configuring eDirectory to Return Complete Data 40

1.6.2 Configuring eDirectoryto ReturnReferrals 40

1.6.3 Enabling Referral Handling in the Application 40

1.6.4 CreatingaRebind Process i 41

1.6.5 Usingthe Rebind Process e 41

1.6.6 Following Referrals Manually. 42

1.6.7 Retrieving Referrals for Non-Search Operations. 42

1.6.8 Limiting Referral Hops e 42

1.7 eDirectory Event System 43
1.71 Registering to Monitoran Event 43

1.7.2 LBURP. .. 43

1.8 Character CONVErSIONSttt e e 44
1.8.1 A Brief History of Character Encoding. i, 44

1.8.2 UTF-8 Encoding.o e 45

1.8.3 UTF-8. ..o 45

1.8.4 Wehar_t Type . . o 46

1.9 Time Formats. 46
1.10 Controls and EXtensions 46

Contents 5

6

2

1101 CoNtrols . .. oo e 47

1.10.2 EXteNSiONS e 47
1.11 Runtime Version of the Library Files i 49

1.11.1 Windows (NT, 95, 98, 2000, XP) & Windows Vista 64-bit..................... 49

1112 NetWare. 50

1.11.3 UNIX 32-bit (Solaris, Linux, AlX, HP-UX) & UNIX 64-bit (Linux) 51
1.12 Internationalization e 52

1121 File LOCatioNns.o 52

1.12.2 Language Directory Names. i 52
Tasks 55
2.1 Establishingan SSL Connection 55
22 Readingthe ROOt DSE. 55
23 Adding an ENntryo 56
24 Modifying an Entryo 57
2.5 Modifying an Entry's Password 57
26 Extendingthe Schema. 58
Standard LDAP Functions 59
ber_allog_t .. 60
ber bvAUD . . . 61
ber bveciree. 62
ber DVITEE. . . 63
ber first element 64
ber flatten. 65
e . . . o 66
ber Nt . 67
ber next_element. 68
ber_peek tag 69
ber printf. o 70
DI SCaNt . . 72
ber sKip_tag 75
ldap_abandon e e 76
ldap_abandon_eXt e 78
dap a0 . .. e e 80
ldap_add exXt e 82
Idap_add eXt S. e e 84
ldap_add S ... e e e 87
ldap_bind e 89
I[dap_bind_digest_ md5_start. 91
Idap_bind_digest_ md5_finish 93
ldap_bind_NmMas_S 95
ldap_bind_S. ... 97
ldap_CanCel_exXt 929
ldap_cancel _exXt S 101
AP COMIPArEo e 103
ldap_compare eXt e 105
ldap_Compare Xt S. i e 107
dap COMIPANE S ...ttt e 109
Idap_control_free e 111
Idap_controls_free 112

NDK: LDAP Libraries for C

[dap_count_entries 113

[dap_COUNt_MESSAgESttt 115
Idap_count_references e 117
I[dap_count_values 119
I[dap_count_values_len e 120
Idap_create_geteffective_control 121
Idap_create_persistentsearch_control e 123
Idap_create_reference_control. 125
Idap_create _sort_CoONtrol e 126
Idap_create_sort_Keylist. e 128
Idap_create_sstatus_control. e 130
[dap_create_VIV_CoNntrol e 131
ldap_deleteo 133
ldap_delete_ext. 134
ldap_delete_ext sS. 136
ldap_delete S 138
ldap_destroyo 139
ldap_dn2Ufn .. e 140
o F=T o T 11] 2P 141
ldap_erm2stringo e 142
Idap_explode dn. e 144
Idap_explode rdn e e 146
Idap_extended _operation e 148
I[dap_extended_operation_s 150
Idap_first_attribute 152
ldap_first entry 154
ldap_first_message.o 156
Idap_first_reference 158
Idap_free_sort_Keylist. 159
ldap_free _Urldesc e 160
dap_get dn 161
Idap_get_digest mdS_realms. 162
Idapssl_install_routines. e 164
Idap_get_entry_controls 165
ldap_get Idermnoo e 167
ldap_get option 169
ldap_get values 170
Ildap_get values len. 172
Idap_gssbind. 174
(Lo E=T o Je KT =14 (o] 176
o =T o T o T 177
ldap_is Idap _Url e 179
Idap_is Idaps_Url e 180
ldap_mMemfree e 181
Idap_MoOdify. . . e 182
I[dap_modify eXt 184
ldap_mModify_eXt_ S ... 186
ldap_MOdify . ..o 188
[dap _MOArdN . . . 190
AP _MOArdN S . . o ot 192
[dap_MOArdnZ 194
[dap_MOArdN2_So 196

Contents

7

8

ldap_msgiree e 198

ldap_MsSgid e 199
A MS YD . . oo 200
I[dap_multisort_entries. 201
I[dap_next_attribute 203
ldap_next entry 205
ldap_NeXt _MESSagE o 207
ldap_next reference 208
[dap_Nmas_err2stringo e 209
[dap_nmas_get_errcode 211
o =T T o) 7= o 212
Idap_parse_entrychange _control 214
Idap_parse_extended_result. 216
Idap_parse_intermediate 218
Idap_parse_reference. 220
Idap_parse_reference_control 222
ldap_parse_result 224
Idap_parse_sasl_bind_result 227
Idap_parse_sort_control e 229
Idap_parse_sstatus_control 231
Idap_parse VIV _Control. e 232
o F= T T 1= 1 o) 234
o F= T T =Y g = 0 2 235
(Lo =T oI =T =T o 4= 237
ldap _resUIt . . 239
ldap_result2error. e 241
Idap_sasl_bind 243
ldap_sasl_bind_s 245
I[dap_schema_fetCh. 247
[dap_schema free 248
Idap_schema_get by name. i 249
Idap_schema_get_count. 250
Idap_schema_get_by index 251
Idap_schema_get_field_names 253
Idap_schema_get_field_values. e 254
l[dap_schema_add. 255
I[dap_schema_modify 256
I[dap_schema_delete. 258
[dap_SChemMa_SaVeo 259
ldap_SearCh 260
ldap_searCh_ext 262
ldap_searCh_exXt S e e 265
ldap_SEarCh _S. . . . e e 268
ldap_searCh St e 270
Idap_set Idermno e e e 273
Idap_set OplioN. e 275
l[dap_set_rebind_procC 277
I[dap_simple_bind 279
Idap_simple_bind_s 281
ldap_SOMt_eNtries 283
[dap_SOM_StrCaSECMIP o ot e 285
Idap_sOrt_values. 286

NDK: LDAP Libraries for C

I[dap_unbind, [dap_unbind_S. 287

Idap_unbind_ext, I[dap_unbind_ext_ s 288
ldap UM _desSC2Str . . . o 290
AP UM _ParSe . ..ot 291
[dap UM _parse_eXt 293
ldap_Uurl_searCh 295
ldap_Url_sSearCh_S. e 297
Idap_url_search_st e e 299
Idap _value free 301
Idap_value free len e 302
Idapssl_client init e 303
Idapssl_client_deinit 305
Idapss Nt . .. 306
I[dapssl_add_trusted_cert e 308
ldapssl_get_Cert 310
Idapssl_get_cert_attribute. 312
Idapssl_set_verify_mode 314
Idapssl_set_client_cert 315
Idapssl_set_client_private_Kkey e 317
Idapssl_get_verify mode 319
Idapssl_set_verify_callback 320
Idapssl start tls e e 322
Idapssl stop s o e 323
LDAP Extension Functions 325
Idap_abort_partition_operation. e 326
[dap_add_repliCa. 328
[dap_backup_object 330
I[dap_change_replica_type 332
I[dap_create_partition 334
I[dap_create_orphan_partition. 336
ldap_event_free 338
Idap_get bind _dn e 339
Idap_get_effective_privileges 341
Idap_get_replication_filter. 343
I[dap_get replica_info 345
Idap_lburp _end request. 347
Idap_lburp_operation_request 348
Idap_|burp_parse_operation_reSpoNnSettt e 350
I[dap_lburp_start_request 351
ldap_list_replicas 352
I[dap_merge_partitions 354
[dap_MONItOr_EVENTS. 356
I[dap_monitor_events_filtered 358
ldap_parse_ds _eVent 360
Idap_parse_Iburp_end_reSpONSEt 362
Idap_parse Iburp_start_ response 364
Idap_parse_monitor_events reSpPONSE.ottt t i 366
Idap_partition_entry_count 368
I[dap_Nnds_to_ldapo 370
I[dap_nds_to_X500_dNn. 372

Contents

9

I[dap_receive_all_updates 374

ldap_refresh_server 376
I[dap_remove_orphan_partition 378
I[dap_remove_repliCa.o 380
Idap_request_partition_SYNC. e 382
I[dap_request_SChema_SYNC 384
Idap_restore_object e 386
Idap_send_all_updates. e 388
Idap_set replication_filter. 390
Idap_split_orphan_partition. e 392
Idap_split_partition e 394
[dap_trigger_back _proCess.ot 396
[dapX_mMemfree 398
5 UTF-8 Functions 399
5.1 UTF-8 / Wide Character CoOnNVversionst e 399
Idap_X_Utf8 t0 WC e 400
ldap_X_Utf8S_t0_WECS 401

Idap X we to Utf8 403
Idap_Xx wes_to Utf8s e 404

5.2 UTF-8 Utility Funclions. e e e e e 405
Idap_ X _Utf8 chars 406
Idap_x_utf8_charlen. 407
Idap_x_utf8_charlen2. 408
Idap_X _Utf8 next e 409
Idap X U8 prev 410
Idap_X_ U8 COPY. . . .ot 411
Idap_X _Utf8 strechr e 412
ldap_X_Utf8_Strspn.o 413
Idap_X_Utf8 Strespn. e 414
ldap_x_utf8_strpbrk 415
Idap_ X Utf8 striok 416

6 Values 419
6.1 Object Access Control Rights i 419
6.2 Attribute Access Control Rights 419
6.3 Certificate Attribute IDs 420
6.4 Inheritance Control Rights 421
6.5 ReplicaStates e 421
6.6 Replication Filters. 423
6.7 RepliCa TYPES . .ot 423
6.8 RequestMessage TypesSottt e 424
6.9 ResultMessage Types.ot 424
6.10 Session Preference Options 425
6.11 Schema Element Types.o i e e e e 430
6.11.1 LDAP_SCHEMA_ATTRIBUTE_TYPE. i 430
6.11.2 LDAP_SCHEMA_OBJECT_CLASS e 432
6.11.3 LDAP_SCHEMA_MATCHING_RULE. 433
6.11.4 LDAP_SCHEMA_MATCHING_RULE_USE i, 434
6.11.5 LDAP_SCHEMA_NAME_FORM. e 434
6.11.6 LDAP_SCHEMA _SYNTAX . .o e 435
6.11.7 LDAP_SCHEMA_DIT_CONTENT_RULE. i 435
6.11.8 LDAP_SCHEMA_DIT_STRUCTURE_RULE. oo, 435

10 NDK: LDAP Libraries for C

6.12 SSL Certificate Status Codes. i 436

Structures 439
BerElement 440
Derval . . 441
DB biNary . ..o 442
DB _NetAdArESS . . . oot 443
DB Parameter . .. 444
DB _timeStampVector 445
DB value ... e 446
EVT_AbandonEventData. 447
EVT _AuthEventData. e e 448
EVT_BinderyObjectinfo 449
EVT_ChangeConfigParm 450
EVT_ChangeConnState 452
EVT_ChangeServerAddro 453
EVT_CompareEventData 454
EVT_ConnectionEventData 455
EVT _Debuginfo 456
EV T ENtryInfo. . .o 458
EVT _EventData e 459
EVT _EventSpecifier 460
EVT _ExtOpEventData e 461
EVT FilteredEventSpecifier 462
EVT _ModDNEventData e e e 464
EVT ModuleState. e 465
EVT _NetAddress 467
EVT_PasswordModifyEventData 468
EVT_ReferralAddresso 469
EVT_ResponseEventData 470
EVT_SearchEventData. 471
EVT_SearchEntryResponseEventData i 473
EVT _SEVINTO . .o 474

EVT_SysExtOpEventData. e 475
EVT _TimeStamp. e 477
EVT _UnknownEventData. e 478
EVT UpdateEventData. e 479
EVT Valuelnfo e 480
LBURPUpdateResuUlt 481
LBURPUpdateOperationList. 482
LD AP . 483
LDAP_DIGEST_MD5_CONTEXT. . . ittt e e e e e 484
LDAPAPIFeaturelnfo 485
LD AP APIINTO. . ot 486
LDAP CONIIOLot 487
LD APMESSaAgEttt e e 488
LDAPMOd . . .o 489
LDAPReplicalnfo. 491
LDAPSChEeMa . . . o 492
LDAPSchemaElement e 493
LDAPSchemaMOod 494

Contents

1"

LDAPSOMKEY . . . 495

LDAPSSL . Cert. . . e 496
LDAPSSL_Cert_Validity Period.ooo i 497
LDAPURLDESC oot e e 499
LDAPVLVINTO . . oo e 501
imEVal. . . 503
A Source Code Contributors 505
B Revision History 507

12 NDK: LDAP Libraries for C

Preface

The LDAP Libraries for C enable you to write applications to access, manage, update, and search for
information stored in Novell® eDirectory™ and other LDAP-aware directories.

LDAP (Lightweight Directory Access Protocol) is becoming an Internet standard for accessing
directory information, allowing LDAP-enabled applications to access multiple directories. LDAP v3
supports such features as secure connections (through SSL and SASL), entry management, schema
management, and LDAP controls and extensions for expanding the functionality of LDAP.

The LDAP Libraries for C are available for the following 32-bit platforms:

+ Windows* (NT*, 95, 98, 2000, XP, Vista)
+ NetWare®
¢ Unix* (Solaris*, Linux*, AIX*, and HP-UX*)
The LDAP Libraries for C are available for the following 64-bit platforms:

+ Windows* (Vista)

¢ Unix* (Linux*)
This guide contains the following sections:

+ Concepts

* Tasks

¢ Standard LDAP Functions

+ LDAP Extension Functions
+ Values

¢ Structures

¢ Source Code Contributors

¢ Revision History

Audience

This guide is intended for C developers who desire to write applications to access, manage, update,
and search for information stored in Novell eDirectory and other LDAP-aware directories.

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of this guide, see LDAP Libraries for C (http://developer.novell.com/
wiki/index.php/LDAP_Libraries_for C).

Preface

13

http://developer.novell.com/wiki/index.php/LDAP_Libraries_for_C

Additional Documentation

For the most recent version of NDK guides, see NDK Download Wibe site (http://
developer.novell.com/wiki/index.php/Category:Novell Developer Kit).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.

14 NDK: LDAP Libraries for C

http://developer.novell.com/wiki/index.php/Category:Novell_Developer_Kit

Concepts

This manual assumes that you have a basic understanding of Novell® eDirectory™ and eDirectory
and LDAP integration. For more information on these topics, see

¢ NDK: Novell eDirectory Technical Overview.

¢ NDK: LDAP and eDirectory Integration.

This manual consists of the following:

¢ Section 1.1, “Getting Started,” on page 15

¢ Section 1.2, “Using the LDAP Functions,” on page 18

¢ Section 1.3, “Authentication and Security,” on page 26

¢ Section 1.4, “LDAP Searches,” on page 34

¢ Section 1.5, “LDAP Based Backup,” on page 39

¢ Section 1.6, “Referral Handling in LDAP v3,” on page 40
¢ Section 1.7, “eDirectory Event System,” on page 43

¢ Section 1.8, “Character Conversions,” on page 44

¢ Section 1.9, “Time Formats,” on page 46

¢ Section 1.10, “Controls and Extensions,” on page 46

¢ Section 1.11, “Runtime Version of the Library Files,” on page 49

¢ Section 1.12, “Internationalization,” on page 52

1.1 Getting Started

The following sections cover a few basic requirements for getting set up and started with the LDAP
Libraries for C:

¢ “Dependencies” on page 16

¢ “Platform Libraries and Header Files” on page 16

* “Supported Platforms” on page 17

+ “Supported Compilers” on page 18

¢ “Tutorials” on page 18

+ “Sample Code” on page 18

Concepts

15

1.1.1 Dependencies

In addition to LDAP Libraries for C, you need the following to take full advantage of the
functionality offered in the libraries:

¢ LDAP Server. The libraries can be used to access any LDAP server and its directory. If you are
using them to access eDirectory, the LDAP server must be running on NDS® 7.xx or higher to
access LDAP v3 functionality. Other servers in the tree can be running earlier versions of NDS;
only the LDAP server needs to be on NDS 7.xx or higher. For information on the functionality
available in various versions of NDS/eDirectory, see NDK: LDAP and eDirectory Integration.

¢ SSL. To use SSL, the LDAP server and the LDAP client must be configured for SSL. For more
information, see Section 1.3, “Authentication and Security,” on page 26.

+ LDAP Extensions for eDirectory. To use the LDAP extensions for partition and replica
management, and getting effective rights, the LDAP server must be running on eDirectory 8.5
or higher. To obtain a copy, see Novell eDirectory evalutation site (http://www.novell.com/
products/edirectory/evaluation.html).

1.1.2 Platform Libraries and Header Files

The LDAP Libraries for C includes the following header files.

Table 1-1 Header File Description

Header File Description

ldap.h Contains the prototypes for all the standard LDAP functions
ldapx.h Contains the prototypes for LDAP functions for extensions
ldapssl.h Contains the prototypes for all of the LDAP SSL functions
ldaputf8.h Contains the prototypes for all of the UTF-8 conversions routines

The following header files are included in the LDAP libraries for C, but are linked by the header
files listed in the previous table:

¢ lber.h

¢ lber types.h

¢ ldap cdefs.h

¢ ldap features.h

The LDAP Libraries for C have been compiled into the following libraries (UNIX* platforms add a
lib prefix to the library names):

16 NDK: LDAP Libraries for C

http://www.novell.com/products/edirectory/evaluation.html

Table 1-2 Platform Libraries

Library Platforms

ldapsdk.dll Win32 platforms (Windows* 95, Windows 98, Windows 2000,

Windows NT* server with SP 4 or newer, Windows NT workstation

ldapx.dll with SP 3 or SP 4), Windows Vista 64-bit.

ldapssl.dll

NOTE: nmas.dl11 is used to perform a bind using Novell Modular

nmas.dll Authentication Services.

ldapsdk.nlm NetWare® 6 with eDirectory 8.6 (or higher), NetWare 5 with SP4 and

NDS 8.2x, NetWare 5.1 with NDS 8.3x

ldapx.nlm

ldapssl.nlm

libldapsdk.so Solaris* (2.6 and 2.7), Linux* (Red Hat 7.2), AIX*, Linux 64-bit.

libldapx.so

libldapssl.so

libldapsdk.sl HP-UX* (11.11)

libldapx.sl

libldapssl.sl

1.1.3 Supported Platforms

The LDAP Libraries for C SDK enables application developers to write applications to access,
manage, update and search for information stored in eDirectory and other LDAP-aware directories.

Client applications remotely access directory information stored on an LDAP server. The libraries
currently support development of such applications on the following platforms:

*

*

NetWare 6™

NetWare 5.1™

Windows NT* workstation 4.0 with SP 3 and SP 4
Windows 95%*

Windows 98*

Windows 2000*

Windows XP*

Solaris 2.8*

Linux (tested on Red Hat 7.2%)
AIX 4.3*

HP-UX 11.11*

Windows Vista* 32-bit and 64-bit
Linux 64-bit*

Concepts

17

The Novell LDAP server is currently available on NetWare 6, NetWare 5.x, and eDirectory (for
NetWare, NT, Solaris, Linux, and AIX).

1.1.4 Supported Compilers

The libraries can be used with the following C compilers:

*

*

Microsoft Visual Studio C++ versions 5 and 6 for Windows

Borland C Compiler for Windows

CodeWarrior from Metrowerks for NLM

Watcom for NLM

GCC 2.95.2 for Linux

Solaris vendor-supplied compiler (built using Sun Workshop Compiler 5.0)
AIX vendor-supplied compiler (built using AIX Compiler version 5)

CC compiler for HP-UX

Microsoft Visual Studio C++ version 8 for Windows Vista 64-bit

1.1.5 Tutorials

DeveloperNet University has developed an LDAP tutorial that creates a White Pages application.
This application is similar to looking up information in the white pages of a phone book and allows
users to browse and search for employees in a company, view their pictures, and obtain phone
numbers, titles, and other information.

To access this tutorial, see Programming NDS with C LDAP (http://developer.novell.com/
education/tutorials/whitepages/index.htm).

1.1.6 Sample Code

To access LDAP sample code, check the following sites:

*

*

*

For source code examples that use the standard functions for LDAP operations (such as search,
add, modify, and delete), see the LDAP sample code for C (http://developer.novell.com/ndk/
doc/samplecode/cldap sample/index.htm).

For source code examples that use the Novell LDAP extensions for LDAP partition operations
(such as add, modify, and delete replicas or splitting and joining partitions), see the LDAP
sample code for extensions (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

For source code and task examples that authenticate, search, and read, see the LDAP examples
in the Library and Laboratory departments of DeveloperNet University (http://
developer.novell.com/education/index.html).

1.2 Using the LDAP Functions

The following sections discuss some general concepts for using the functions to accomplish a task
and some principles for selecting the appropriate function for the task. It covers the following topics:

*

Section 1.2.1, “Using Dynamic Memory with LDAP Functions,” on page 19

18 NDK: LDAP Libraries for C

http://developer.novell.com/education/tutorials/whitepages/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/education/index.html

¢ Section 1.2.2, “Selecting a Function for an LDAP Operation,” on page 21

¢ Section 1.2.3, “Using Asynchronous or Synchronous Functions,” on page 21

¢ Section 1.2.4, “Initializing a Session with LDAP v3,” on page 22

¢ Section 1.2.5, “Setting Initial Connection Timeout,” on page 22

¢ Section 1.2.6, “Setting and Getting the Cipher Level,” on page 23
¢ Section 1.2.7, “LDAP URLSs,” on page 23
¢ Section 1.2.8, “Threads,” on page 24

¢ Section 1.2.9, “Internationalization,” on page 25

1.2.1 Using Dynamic Memory with LDAP Functions

If your application allocates any memory for use with LDAP functions, that memory must be freed
by your application. Do not free this memory using an LDAP function, for example Idap_memfree.

All memory allocated by LDAP functions must be freed by LDAP functions. The following table
lists the LDAP functions which allocate memory and the LDAP function you should use to free the

memory.

Table 1-3 Dynamic Memory with LDAP Functions

Functions That Allocate Memory

Parameter/Structure Member

Memory Free Functions

ber_alloc_t

ber_bvdup

ber_flatten

ber_init

ber_scanf

ber_scanf

ber_scanf

ber_scanf

ber_scanf
Idap_create_sort_control
Idap_create_sort_keylist
Idap_create_vlv_control
Idap_dn2ufn
Idap_explode_dn
Idap_explode_rdn
Idap_extended_operation_s

Idap_extended_operation_s

return(BerElement *)
return(struct berval *)
bvptr
return(BerElement *)
"a" format option

"B" format option
"O" format option
"V" format option

"v" format option
ctrlp

sortKeyList

ctrlp

return(char *)
return(char **)
return(char **)
retdatap

retoidp

ber_free
ber_bvfree
ber_bvfree
ber_free
Idap_memfree
Idap_memfree
ber_bvfree
ber_bvecfree
Idap_memfree
Idap_control_free
Idap_free_sort_keylist
Idap_control_free
Idap_memfree
Idap_value_free
Idap_value_free
ber_bvfree

Idap_memfree

Concepts

19

Functions That Allocate Memory Parameter/Structure Member Memory Free Functions

Idap_first_attribute return (char *) Idap_memfree

Idap_first_attribute BerElement ber_free (xxx, 0)

Idap_get_context_identity_name identity Idapx_memfree

Idap_get_dn return (char *) Idap_memfree

Idap_get_entry_controls LDAPControl Idap_controls_free

Idap_get_option LDAP_OPT_API_INFO/

Idapai_extensions

Idap_value_free

Idap_get_option LDAP_OPT_APIL_INFO/

Idapai_vendor_name

Idap_memfree

Idap_get_option LDAP_OPT_MATCHED_DN / Idap_memfree |

outvalue Idap_controls_free

Idap_get_values return (char **) Idap_value_free

Idap_get_values_len return(struct berval **) Idap_value_free len

Idap_init return(LDAP *) Idap_unbind, Idap_unbind_s
Idap_list_replicas replicaList Idapx_memfree
Idap_nds_to_ldap_name IdapName I[dapx_memfree

Idap_next_attribute

Idap_next_attribute BerElement ber_free (xxx, 0)
Idap_parse_extended_result retdatap ber_bvfree
Idap_parse_extended_result retoidp Idap_memfree
Idap_parse_reference referralsp Idap_value_free
Idap_parse_reference serverctrlsp Idap_controls_free
Idap_parse_result errormsgp Idap_memfree
Idap_parse_result matcheddnp Idap_memfree
Idap_parse_result referralsp Idap_value_free
Idap_parse_result serverctrisp Idap_controls_free
Idap_parse_sasl_bind_result servercredp ber_bvfree
Idap_parse_sort_control attribute Idap_memfree
Idap_parse_vlv_control contextp ber_bvfree
Idap_result res Idap_msgfree
Idap_sasl_bind_s servercredp ber_bvfree
Idap_search_ext s res Idap_msgfree
Idap_search_s res Idap_msgfree
Idap_search_st res Idap_msgfree

return (char *)

Idap_memfree

20 NDK: LDAP Libraries for C

Functions That Allocate Memory Parameter/Structure Member Memory Free Functions

Idap_ssl_client_init Idap_ssl_client_deinit
Idap_ssl_init return(LDAP *) Idap_unbind
Idap_url_parse ludpp Idap_free_urldesc
Idap_url_parse_ext ludpp Idap_free_urldesc
Idap_url_search_s res Idap_msgfree
Idap_url_search_st res Idap_msgfree
Idap_url_desc2str return(char *) Idap_memfree

The following functions free the memory allocated to the res parameter if the freeit parameter is set
to true:

ldap parse_extended result
ldap_parse_reference

ldap parse_result

ldap parse sasl bind result
Idap_result2error

1.2.2 Selecting a Function for an LDAP Operation

Most LDAP functions that perform operations (such as add, delete, modify) have four variations:

¢ LDAP v2 asynchronous. These take the format of ldap operation, for example, Idap search.

¢ LDAP v3 asynchronous. These take the format of ldap operation _ext, for example,
Idap search_ext.

¢ LDAP v2 synchronous. These take the format of Idap operation_s, for example,
Idap search_s.

¢ LDAP v3 synchronous. These take the format of Idap operation ext_s, for example,
Idap search_ext s.

If you are developing a new application, you should use the LDAP v3 version of the functions. The
LDAP library supports the LDAP v2 versions for backwards compatibility with earlier releases.

1.2.3 Using Asynchronous or Synchronous Functions

Blocking versus Non-Blocking. Synchronous functions block and do not return until the LDAP
server has serviced the request and returned a result. Asynchronous functions return as soon as the
LDAP client processes the request, and the application is then free to do other work. However, the
application is responsible to use the returned message ID to check on the status of the operation.

Return Values. The synchronous functions return both client and server error codes. The
asynchronous ldap * ext functions return only the client error codes. The subsequent results must
be parsed for the server error codes. The asynchronous ldap * functions return a -1 for the client
error codes, and the Idap _get option function must be used to retrieve the client error codes from the
LDAP session handle.

Concepts

21

1.2.4 Initializing a Session with LDAP v3

By default, the LDAP v2 functions set up an LDAP v2 session because the session handle is
configured for an LDAP v2 session. To ensure that your application sets up an LDAP v3 session,
call the following functions in the order specified. The following example uses ldap _simple bind.

1 Call the Idap_set_option function with the 1d parameter set to NULL and the option parameter
setto LDAP_OPT PROTOCOL_VERSION, and the invalue parameter set to
LDAP_VERSION3.

This sets the value in the global session handle to LDAP v3 and all subsequent session handles
assume these values.

2 Call the 1dap_init function.
3 Call the Idap_simple bind or Idap simple bind s function.

NOTE: This example uses clear text passwords. When you are ready to set up a secure connection,
see “Authentication” on page 28.

1.2.5 Setting Initial Connection Timeout

Setting an initial connection timeout enables you to control the amount of time your application will
wait for an initial connection to succeed. If a server does not respond and no initial connection
timeout option is specified, timeout depends upon the underlying socket timeout setting of the
operating system.

By setting an initial connection timeout, you can control how long your application will wait for an
initial connection, then possibly attempt a connection to another server or wait and attempt a
connection at another time.

An initial connection timeout is set using the LDAP_OPT _NETWORK_ TIMEOUT option (set by
calling Idap _set option (page 275)). The initial connection usually happens on the Bind command,
whether it’s synchronous or asynchronous; simple, SASL, NMAS, or digest-md5. If no bind
command is given, the initial connection happens on the first LDAP operation. An initial connection
may also occur during a referral or rebind operation.

The following example sets an initial connection timeout of 10 seconds:

struct timeval timeOut = {10, 0};
ldap set option(NULL, LDAP OPT NETWORK TIMEOUT, &timeOut);

Passing NULL for the 1d parameter to Idap_set option will set this as the default connection timeout
for subsequent session handles created with ldap_init() or 1dapssl_init(). To clear the timeout, pass
NULL for the timeout argument to Idap _set option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

Using the connection timeout, you can specify multiple hosts separated by spaces in a bind call, and
use this timeout to determine how long your application waits for an initial response before
attempting a connection to the next host in the list. The following example sets an initial connection
timeout of 5 seconds and multiple hosts in the bind call:

22 NDK: LDAP Libraries for C

struct timeval timeOut = {5,0};
ldap set option(NULL, LDAP OPT NETWORK TIMEOUT, &timeOut);
1d = ldap_init ("www.acme.com 129.233.80.5 127.0.0.1", 389);

1.2.6 Setting and Getting the Cipher Level

There are four possible combinations of cipher that can be set. The following table provides the
details:

Table 1-4 Details of the Cipher Level

Cipher Value Key Strength Algorithm
LDAP_TLS_CIPHER_LOW 56 Single DES
LDAP_TLS_CIPHER_MEDIUM 128 RSA
LDAP_TLS_CIPHER_HIGH 168 Triple DES
LDAP_TLS_CIPHER_EXPORT 56 SHA

By default, the cipher is set to high (triple DES). If the you want to set any of the above mentioned
cipher value, call the following functions in the order specified. The following example uses
ldap _simple_ bind.

1 Call the ldap_set_option function with the 1d parameter set to NULL and the option parameter
setto LDAP_OPT TLS CIPHER LEVEL, and the invalue parameter set to
LDAP_TLS_CIPHER MEDIUM.

This sets the value in the global session handle to key strength 128, algorithm RSA, and all
subsequent session handles assume these values.

2 Call the 1dapssl_init function.
3 Call the Idap_simple bind or Idap simple bind s function.

NOTE: After the bind operation is complete, the application can retrieve the cipher settings
used during SSL connection by using the ldap get option.

1.2.7 LDAP URLs

LDAP URLs provide a uniform method to access information on an LDAP server. Defined in RFC
2255, LDAP URLs begin with the prefix ldap:// or 1daps://. The following provides the syntax and
descriptions of an LDAP URL.

ldap[s]://<hostname>:<port>/<base dn>?<attributes>?<scope>?<filter>?<extension>

TIP: 1daps is a common enhancement used to denote SSL, and is not defined in an RFC.

In the LDAP Libraries for C, LDAP URLs are used to:

+ Return referrals or search references from a server

¢ Perform searches (Idap url _search (page 295))

Concepts

23

Table 1-5 Field descriptions for an LDAP URL

URL Element Default Value Description

hostname none DNS name or IP address of the LDAP server.
port 389 Port of the LDAP server.

base _dn root Base DN for the LDAP operation.

attributes all attributes A comma-delimited list of attributes to return.
scope base Search scope: base, one, sub.

filter objectClass=* Search filter.

extension none LDAP extended operations.

NOTE: An attribute list is required if you want to provide a scope (even if the attribute list is blank).
To return all attributes within a specific scope you must include <base dn>??7<scope>.

Determining if a URL is an LDAP URL
To determine if a URL is a valid ldap:// or Idaps:// URL use one of the following functions:

¢ ldap is ldap url (page 179)
¢ ldap is_ldaps_url (page 180)

Both functions take a URL as the parameter and return 1 if the URL is a valid LDAP URL, and 0 if
it is not valid.

Parsing an LDAP URL

The ldap url parse (page 291) function parses an LDAP URL and returns an LDAPURLDesc
(page 499) structure to your application. You can then retrieve the individual parameters from the
URL, or you can pass this URL to a search function.

Searching with an LDAP URL

The Idap_url search (page 295) functions allow you to pass an LDAPURLDesc structure to perform
an LDAP search.

1.2.8 Threads

The LDAP libraries for C APIs are operation thread safe. This allows different threads within an
application to concurrently use the same LDAP session handle for different operations.

Applications using this feature need to duplicate the session handle using the Idap dup (page 141)
function. The returned session handle may be used concurrently with the original session handle. To
destroy the session handle use the Idap destroy (page 139) function.

The following example uses Idap dup and Idap destory.
1. Call the Idap_init (page 177) function.

24 NDK: LDAP Libraries for C

2. Call the Idap_simple bind (page 279) or Idap _simple bind s (page 281) function.
3. Duplicate the session handle using Idap dup (page 141).

4. Use the duplicated session handle in a separated thread to do any LDAP operation like add,
search, or modify.

5. Close the duplicated session handle using Idap destroy (page 139) in the same thread.

6. Use the original LDAP handle in the main thread to do any LDAP operation like add, search, or
modify.

7. Use the LDAP_OPT _SESSION REFCNT to get reference count associated with the supplied
session handle.

8. Call the Idap unbind function.

For more information, refer to the theadSafe.c sample program.

1.2.9 Internationalization

The LDAP libraries have been enabled for internationalization. However, the messages are currently
available only in English. For cross-platform support, the English messages have been placed in the
following files:

Table 1-6 Internationalization File Name on Different Platforms

File Name Platform

ldapsdk.msg NetWare
ldapsdkmsg.dll Windows (NT, 95, 98, 2000)
ldapsdk.mo Solaris (2.6, 2.7, 2.8),

Linux (RedHat 7.2), AIX and HP-UX (11.11)

Depending upon the platform, the message file is installed in the following locations:

¢ On a NetWare server in the sys: \system\nls\4 directory.
¢ On an eDirectory for NT server in the winnt\system32\nls\english directory.

¢ On a Windows client in the Novell\ndk\cldapsdk\bin\win32\nls\english
directory.

¢ On a Unix platform (Solaris, Linux, or HP-UX) in the [install directory]/
cldapsdk/lib/locale/C/LC_MESSAGES directory.

NetWare NLMs

If you wish to translate the messages to another language for the NetWare platform, you will need to
use the internationalization tools included in the NLM User Interface Developer Components (http:/
/developer.novell.com/ndk/unsupported.htm#nwsnut). Use the 1dapmsg.h file and the tools to
create an errormsg . mdb file. Use the tools to translate the errormsg.mdb file. Use the
translated file and the tools to create an 1dapsdk.msqg file.

Concepts

25

http://developer.novell.com/ndk/unsupported.htm#nwsnut

Windows

If you wish to translate the messages to another language for the Windows platform, translate the
errormsg. rc file. When you save the file, the resource. h file is created. Build the code to
convert the errormsg.rc and resource.h filesto an errormsg.d11 file.

Unix
If you wish to translate the messages to another language for a Unix platform, complete the

following steps:

1 Translate the messages in the 1dapsdk. po file to the target language. This file is located in
the <install directory>/cldapsdk/1lib/locale/C/LC_MESSAGES directory.
The following steps assume that French is the target language.

2 Use the msgfmt command to convert the 1dapsdk . po file to an 1dapsdk.mo file.
3 Create the directory for the messages. For French, the directory would be the following:

<install directory>/cldapsdk/lib/locale/fr/LC_MESSAGES
4 Copy the 1dapsdk.mo file to the directory created in Step 3.
5 Export the following:

NLDAPSDK ROOT=<install directory>

1.3 Authentication and Security

This section contains an overview of authentication and security in the LDAP Libraries for C. This
section provides the information you need to set up SSL security, effectively authenticate servers
and clients, examine certificates, and securely transport information across your network.

+ “Setting Up SSL Security” on page 26 contains instructions on configuring eDirectory for use
with SSL, as well as information on exporting server and client SSL certificates.

¢ “Authentication” on page 28 contains an overview of the different authentication mechanisms
available in the LDAP Libraries for C.

¢ “SSL Certificates” on page 31 contains an explanation of the different methods available to
effectively examine then accept or reject SSL Certificates.

* “Transport Layer Security” on page 33 contains instructions on starting and stopping Transport
Layer Security (TLS).

1.3.1 Setting Up SSL Security

The LDAP Libraries for C are independent of Novell client software, and they perform their own
authentication. For SSL authentication to work, the LDAP server must have a certificate to use with
SSL, and the LDAP libraries must be configured to trust the LDAP server's certificate. Thus, the
following two components must be set up to use SSL:

+ “LDAP Server” on page 27

+ “Server Certificate” on page 27

26 NDK: LDAP Libraries for C

Additionally, to use Client-Based Certificate Authentication (CBCA, sometimes referred to as
mutual authentication), you must have a client certificate. See the following for additional
information:

¢ “Client Certificate” on page 27

LDAP Server

In eDirectory 8 and higher, the LDAP server is installed and started automatically with eDirectory.
The LDAP server is set up to service anonymous binds by default.

To enable secure connections over SSL, the LDAP server must be set up with a digital certificate
from a Certificate Authority.

The steps for setting up SSL on the LDAP server are slightly different for each release of eDirectory.
For specific information, see one of the following:

¢ eDirectory Documentation (http://www.novell.com/documentation/lg/edir87/edir87/data/
a2iii88.html)

¢ NetWare 5 for PKI (http://www.novell.com/documentation/lg/nw5/ussecur/crndsenu/data/
h0000014.html) and for the LDAP server (http://www.novell.com/documentation/lg/nw5/
usnds/Idap _enu/data/h0000012.html)

Server Certificate
The LDAP libraries perform SSL server authentication using SSL certificates.

To export an eDirectory server certificate use ConsoleOne. For step-by-step instructions for this
procedure, see the Novell Certificate Server Documentation. (http://www.novell.com/
documentation/lg/crt221ad/index.html)

For details on using this certificate see “SSL Certificates” on page 31.

Client Certificate
The LDAP Libraries for C perform SSL client authentication using SSL certificates.

To export a client certificate, use ConsoleOne. For step-by-step instructions for this procedure see
Novell Certificate Server Documentation (http://www.novell.com/documentation/lg/crt221ad/
index.html).

TIP: When exporting a client certificate using ConsoleOne, you can place the client private key and
certificate in the same file, then secure this file with a password. This password helps prevent
unauthorized use of this file.

For details on using this certificate see the Client-Based Certificate Authentication and the SASL
External sections in “Authentication” on page 28.

Concepts

27

http://www.novell.com/documentation/lg/edir87/edir87/data/a2iii88.html
http://www.novell.com/documentation/lg/nw5/ussecur/crndsenu/data/h0000014.html
http://www.novell.com/documentation/lg/nw5/usnds/ldap_enu/data/h0000012.html
http://www.novell.com/documentation/lg/crt221ad/index.html
http://www.novell.com/documentation/lg/crt221ad/index.html

1.3.2 Authentication

The LDAP Libraries for C provide two methods for authentication: Simple Bind and Simple
Authentication Security Layer (SASL). Simple Bind enables you to authenticate using a
distinguished name and password, whereas SASL defines a standard method to support any number
of different authentication mechanisms.

+ “Simple Bind” on page 28
+ “Simple Authentication Security Layer” on page 29
Simple Bind

Simple bind enables you to authenticate to an LDAP server using a distinguished name and
password. Simple bind can be used with or without SSL security, and with or without client-based
certificate authentication (CBCA).

Simple Bind Without SSL

In order to use simple bind without SSL, eDirectory must be configured to accept clear text
passwords:

General I
LDAP Group General

v &llow Clear Text Passwards

WARNING: Enabling eDirectory to accept clear text passwords means that any password you send
in clear text is not encrypted as it is transported. Clear text passwords should not be used outside of
a secure environment.

For an example, see bind.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
bind.c.html). For information on client certificates, see “Client Certificate” on page 27.

Simple Bind With SSL

To use simple bind with SSL, the session is initialized using ldapssl _init (instead of Idap_init),
which returns an SSL-enabled context handle to your application. calling ldap _simple bind with
this handle encrypts your bind call using SSL.

For an example using simple bind with SSL, see sslbind.c (http://developer.novell.com/ndk/doc/
samplecode/cldap_sample/sslbind.c.html).

Client-Based Certificate Authentication

Optionally, the LDAP client can present an SSL certificate during authentication, and eDirectory
can be configured to require this. This feature is called client-based certificate authentication
(CBCA, sometimes referred to as mutual authentication), and can be enabled on the LDAP server
object using ConsoleOne:

28 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/bind.c.html
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/sslbind.c.html

| S5L Configuration
[LOAP Server SSL Configuration

S5L Port [pas

S5L Cedificate: ISSL CetificateDNE

v Enable and Reguire Mutual Authenticatior

To use CBCA, specify a client private key and a client certificate by calling the
ldapssl_set client private key and the ldapssl_set client_cert functions. Once you have specified a
private key and certificate, call Idap simple bind to perform the bind.

For an example using client based certificate authentication with simple bind, see mutual.c (http://
developer.novell.com/ndk/doc/samplecode/cldap sample/mutual.c.html).

Simple Authentication Security Layer

Simple Authentication Security Layer (SASL) is a standard way for adding authentication support to
connection-based protocols.

SASL is used by LDAP to provide modular authentication by defining a standard method for a client
and server to use common or custom mechanisms for authentication. Several SASL mechanisms are
currently defined by IETF RFCs and Internet drafts.

Although generic SASL support is provided by the Idap sasl bind function, the LDAP Libraries for
C have been enhanced to simplify using many SASL mechanisms.

NOTE: Support for SASL was added in eDirectory 8.7. To determine which SASL mechanisms are
supported by any LDAP server query the rootDSE.

SASL is defined in RFC 2222. The following SASL mechanisms are currently supported by
eDirectory 8.7:

Digest MD5

Digest MDS5 uses a hash algorithm to encrypt and ensure the integrity of transferred data without
using SSL. During Digest MDS5 authentication, the client sends a request to the sever, to which the
server responds with a digest-challenge (unique data that is verified by the client). The client then
sends a response to the server with digest information and login credentials. If the server
successfully verifies the response the user is authenticated.

Digest MD5 is defined in RFC 2831.

To use Digest MDS5, call the Idap_bind digest md5_start function. Once that call completes
successfully, call the Idap_bind md5_finish function specifying your login credentials.

Optionally, before calling the Idap bind md5_finish function, you can call
Idap get digest mdS_realms to retrieve the MDS5 realms. In eDirectory, there is only one realm
returned which is the tree to which you sent the bind request.

For an example, see md5bind.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
md5bind.c.html).

Concepts

29

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/mutual.c.html
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/md5bind.c.html

NOTE: To use SASL Digest MD5 you do not need to call the ldap_sasl_bind function directly.

Mechanism-specific dependencies:

O The simplePassword attribute must have been set for the user attempting authentication. To set
a simplePassword, use the Novell Import Convert Export utility or the simplePassword snap-in
for ConsoleOne.

External

SASL External is used in conjunction with the client-based certificate authentication (CBCA)
feature of eDirectory. This enables you to require any client attempting a connection to your sever to
present an SSL certificate for verification. With this mechanism, the client and server exchange SSL
certificates and each determine whether or not to accept the connection.

When using CBCA, instead of passing credentials, the client can use the SASL External mechanism
to authenticate to the server based on the information in the SSL certificate.

To use SASL external, specify a client private key and a client certificate by calling the

ldapssl_set client private key and the Idapssl set client cert functions. Once you have specified a
private key and certificate, call 1dap_sasl bind specifying EXTERNAL as the mechanism parameter
to perform the bind.

For an example, see saslExternal.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
saslExternal.c.html).

Mechanism-specific dependencies:

O Client-based certificate authentication must be enabled and required by eDirectory (see “LDAP
Server” on page 27).

Novell Modular Authentication Services

Novell Modular Authentication Services (NMAS) provides the ability for developers to add various
login and authentication methods to their applications. Possible methods include face recognition,
fingerprints, voice recognition, signature, iris recognition, tokens, and smart cards as well as
standard passwords. The NMAS SASL mechanism enables you to use these methods to bind to
eDirectory using the LDAP protocol.

To use the SASL NMAS mechanism, call Idap_bind nmas_s specifying the requested NMAS
sequence and clearance.

NOTE: To use SASL NMAS authentication you do not need to call the Idap sasl bind function
directly.

Mechanism-specific dependencies:

O Microsoft Windows (NMAS functionality is limited to Windows)

O The NMAS library, nmas.dll, which is included with the LDAP Libraries for C. For additional
information on NMAS see Novell Modular Authentication Service (http://
developer.novell.com/ndk/doc/nmas/index.html?page=/ndk/doc/nmas/nmas_enu/data/
a3012t8.html).

30 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/saslExternal.c.html
http://developer.novell.com/ndk/doc/nmas/index.html?page=/ndk/doc/nmas/nmas_enu/data/a30l2t8.html
http://developer.novell.com/ndk/doc/nmas/index.html?page=/ndk/doc/nmas/nmas_enu/data/a30l2t8.html
http://developer.novell.com/ndk/doc/nmas/index.html?page=/ndk/doc/nmas/nmas_enu/data/a30l2t8.html

GSSAPI

The SASL-GSSAPI mechanism enables you to authenticate to eDirectory through LDAP using a
Kerberos ticket and you are not required to enter the eDirectory user password. The Kerberos ticket
should be obtained by authenticating to a Kerberos server.

This feature is primarily useful for LDAP application users in environments that already has a
Kerberos infrastructure in place. Therefore, these users should be able to authenticate to the LDAP
server without providing a separate LDAP user password.

To facilitate this, eDirectory introduces the SASL-GSSAPI mechanism.

The current implementation of SASL-GSSAPI is compliant with RFC 2222 (http://www.ietf.org/rfc/
rfc2222 txt?number=2222 (http://www.ietf.org/rfc/rfc2222. txt?number=2222)) and supports only
Kerberos v5 as the authentication mechanism.

Mechanism-specific dependencies:

O We assume that SASL-GSSAPI is already installed on your machine. If not, you might want to
download and install SASL-GSSAPI.

O On Windows, SSPI is used for Kerberos authentication

1.3.3 SSL Certificates

The LDAP Libraries for C can be configured to handle server SSL certificates in one of three ways:

¢ Add trusted certificates. Your application individually adds each trusted server certificate and
does not accept any other certificates. This is the most secure way to handle SSL certificates
and is the default mode.

+ Interactive verification. Your application provides a callback mechanism that is called when
non-trusted certificates are encountered. This method provides functions to determine the
characteristics of the certificate so your application can decide whether or not to trust the
certificate.

Add Trusted Certificates

If your application is designed to work with a known set of LDAP servers, the most secure way to
handle SSL certificates is to individually add each server certificate.

Only trusted certificates are accepted in this mode unless you specify a callback function using
interactive verification, in which case your callback function is called to handle the certificate. This
is the default mode for SSL certificate verification.

To add trusted certificates, use the Idapssl _add trusted cert (page 308) function to add each
certificate from a DER or Base64 encoded file. For instruction on exporting encoded certificates
using ConsoleOne see “Setting Up SSL Security” on page 26.

Interactive Server Verification

The LDAP libraries for C provide an interactive mechanism to handle SSL certificates, called
Interactive SSL.

Concepts

31

http://www.ietf.org/rfc/rfc2222.txt?number=2222
http://www.ietf.org/rfc/rfc2222.txt?number=2222

Interactive SSL is used in conjunction with the add trusted certificates mode to provide a callback
function when an un-trusted certificate is encountered. If a certificate is not found in the list of
trusted certificates, your callback function is called to review the certificate. Your callback function
can then choose to accept or reject the certificate.

Interactive server verification mode is set by calling the 1dap_ssl set verify callback function and
specifying a callback function. If no callback function is specified, certificates are handled as
described in “Add Trusted Certificates” on page 31.

For an example of a complete certificate callback routine, see sslbindi.c (http://
developer.novell.com/ndk/doc/samplecode/cldap sample/sslbindi.c.html).

Creating a Certificate Callback Function
To create your own certificate callback function you need to do the following three things:

1 Before coding, determine your criteria for accepting or rejecting certificates based on the
certificate status, issuer, subject, and validity period.

2 Inyour code, retrieve the certificate status and other certificate information and determine if the
certificate meets your acceptance criteria.

3 Return either LDAPSSL._CERT_ ACCEPT (to accept the certificate) or
LDAPSSL _CERT REJECT (to reject the certificate).

Certificate Status

The SSL certificate status codes are defined in Section 6.12, “SSL Certificate Status Codes,” on
page 436. The status code indicates the reason your callback function was called. For example, the
certificate might be un-trusted, contain an invalid date, or a formatting error.

The certificate status is retrieved by calling ldapssl get cert attribute (page 312) specifying
LDAPSSL _CERT_GET STATUS as the attribute ID you would like returned.

Of the sixteen status codes, only three indicate a valid certificate:
LDAPSSL_CERT STATUS ERR_CERT UNTRUSTED,

LDAPSSL_CERT STATUS ERR DEPTH ZERO_SELF SIGNED CERT, and
LDAPSSL_CERT STATUS ERR _SELF SIGNED_ CERT IN CHAIN. The first status simply
means that this certificate is not trusted, and the other two indicate a self-signed certificate.

All other status codes indicate a problem with the certificate, such as an invalid date or a format
error. In most cases you will reject invalid certificates, though you can find out more about the
certificate and decide based on other factors.

Other Certificate Information

The Idapssl get cert attribute function can also retrieve the certificate issuer
(LDAPSSL_CERT_ATTR_ISSUER), the certificate subject
(LDAPSSL_CERT_ATTR_SUBIJECT), and the certificate validity period
(LDAPSSL_CERT_ATTR_VALIDITY_ PERIOD) to help you determine whether or not to accept
the certificate. For example, you might want to check the issuer and validity period on all un-trusted
certificates before accepting them.

32 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/sslbindi.c.html

Accept or Reject the Certificate

Once you have determined whether or not the certificate meets your criteria for acceptance your
callback function returns either LDAPSSL. CERT_ACCEPT to accept the certificate or
LDAPSSL_CERT_REJECT to reject the certificate.

Helper Functions

In addition to ldapssl_get cert attribute, the LDAP Libraries for C provide other functions to help
you handle SSL certificates, outlined below:

+ ldapssl get cert (page 310) enables you to place the certificate in a buffer encoded in DER or
Base64 format. You can then pass this buffer directly to Idapssl_add trusted cert (page 308) to
add this certificate to the list of trusted certificates.

¢ ldapssl add trusted cert (page 308) enables you to add a certificate to a list of trusted
certificates. The certificate will remain trusted for the duration of the session.

¢ ldapssl get verify mode (page 319) returns the current server verification mode.

Accept Any Certificate

This function will be deprecated in the future C LDAP SDK releases. For this release, the
LDAPSSL_VERIFY_ NONE option will not be supported in both Idapssl_set verify mode and
ldapssl_get verify mode.

1.3.4 Transport Layer Security

When you perform SSL authentication, SSL security is used to encrypt data transfers for the
duration of the session.

TIP: Transport Layer Security (TLS) is the open-standards equivalent of SSL. When the IETF
standardized SSL, this standardized security layer was named TLS.

Because of the overhead of encryption, there are times when a client might want to disable SSL
security and send information un-encrypted. Additionally, you might want to perform a clear text or
non-SSL SASL authentication, then enable SSL security to transfer a piece of sensitive information.

The LDAP Libraries for C provide startTLS and stopTLS functions to enable and disable TLS.

For an example of starting and stopping TLS see starttls.c (http://developer.novell.com/ndk/doc/
samplecode/cldap _sample/starttls.c.html).

1.3.5 Recommendations

We recommend you do the following for maximizing the security:

+ Do a simple bind over encrypted channel.
+ Do not accept any certificates without validation.

* Do a check for the SSL authentication failure. As LDAP Libraries for C does not check this,
but your application should do it.

Do set the cipher to high.

*

Concepts

33

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/starttls.c.html

1.4 LDAP Searches

In LDAP, search functions are used for both searching and reading information from the directory.
The LDAP Libraries for C provide the following asynchronous and synchronous functions:

Function Description

ldap_search Uses a search filter and specified attributes to search the directory

either synchronously or asynchronously.
Idap_search_s

Idap_search_ext Use a search filter, specified attributes, time limit, and LDAP controls

to search the directory either synchronously or asynchronously.
Idap_search_ext_s

Idap_search_st Uses a search filter, specified attributes, and a time limit to
synchronously search the directory.

A search results can contain entry, references, or search result messages. The last message in the
results is always a search result message. Each message type has its own set of functions for reading
the results. If you use the ldap_first message and ldap next message functions, the following
message types are returned:

+ LDAP_RES _SEARCH_ENTRY

Returns the directory entries from the search.
+ LDAP RES SEARCH REFERENCE

Returns a sequence of one or more LDAP URLs. An LDAP RES SEARCH_REFERENCE is
returned for each area not explored by this LDAP server during the search.

If the LDAP server is configured to follow referrals automatically, the LDAP server will never
return LDAP_RES SEARCH REFERENCE to the application.

+ LDAP_RES_SEARCH_RESULT

Returns a search result message.

If you are only interested in the entry messages from the search, you can use the Idap_first _entry and
ldap_next entry to read just the entry results and to skip any other type of message.

If you are only interested in search references returned from the search, you can use the
ldap_first reference and ldap_next reference functions to read the references and to skip any other
type of message.

1.4.1 Setting the Search Parameters and Search Constraints

The search parameters set up the criteria for where the search begins, what entries to find, and what
information to return with the matching entries. Search contraints determine how many entries to
return and set time limits on looking for the entries. These same parameters and constraints can be
set up to perform read operations.

Base. The base parameter specifies the container in the directory where the search begins. You can
specify the root of the directory tree, or any container or branch of the directory tree. For quick
searches, be as specific as you can because a branch search is always faster than a full search from
the tree root.

34 NDK: LDAP Libraries for C

Scope. The scope parameter specifies how deep to search. It allows three levels to be set:

¢+ LDAP_SCOPE_BASE (0x00)—searches only the entry specified by the base parameter. If the
base parameter is set to the entry and the scope parameter set to this level, the search becomes a
read of this entry.

¢+ LDAP_SCOPE_ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.

¢+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with, and including,
the entry specified by the base parameter. If the eDirectory server does not contain replicas for
all the containers in the specified subtree, the server can automatically follow referrals to other
servers. A session option, LDAP_OPT_REFERRALS, allows you to specify whether referrals
are followed automatically or whether search references should be returned to where the
additional entries are located. For more information, see Section 6.10, “Session Preference
Options,” on page 425

¢+ LDAP_SCOPE SUBORDINATESUBTREE (0x03)—searches all subordinates of the
specified base object, but does not include the base object, as the subtree scope does.

Filter. The search filter specifies what you are searching for. The following is a simple filter that
searches for all entries with the last name of Smith.

"sn=Smith"

The default filter, if no filter is specified, is "(objectClass=*)". This filter searches every entry in the
directory since the objectClass attribute is a required attribute of all entries in the directory.

These simple filters are strings with the following format:

attribute name operator value

For example, if you specified (cn=Kim Smith), the search would return entries with a common name
of Kim Smith.

For information about the grammar required to create more complex search filters, see “Using
Search Filters” on page 37.

Attributes. The attribute parameter specifies which attributes to return with each matching entry.
The parameter accepts the following types of values:

¢ To return specific attributes, you pass a NULL-terminated array of attribute names in the
parameter.

¢ To return only entry names (and no attributes), set the first, and only, string in the array to
LDAP_NO_ATTRS.

¢ To return all attributes, set this parameter to NULL

Attributes Only. This parameter determines whether values are returned with the attributes
specified in the attribute parameter. Set this parameter to zero (0) to return attributes and values. Set
it to a non-zero value to return only attribute names and no values.

Time Limit. The time limit determines how long the server should wait for search results before
returning to the client. The time limit is approximate because the client passes the value to the
LDAP server with the search request and is dependent upon the LDAP server's interpretation of the
limit.

Concepts

35

The Idap_search ext, Idap search ext s, and Idap search_ st functions allow you to specify the
time limit with a timeout parameter. This parameter points to a timeval structure that specifies the
maximum time to wait for the results of a search to complete. The structure specifies both the time
the server waits for the operation to complete as well as the time the local function waits for the
server to respond. If the timeout parameter is set to NULL, the client timeout is infinite and the
server uses the timeout value specified in the LDAP_OPT _TIMELIMIT option.

The other search functions do not have a timeout parameter and use the LDAP_OPT_TIMELIMIT
option. This option determines the number of seconds an LDAP server will spend on a search. A
value of LDAP _NO_LIMIT (0) means no limit. The default is LDAP NO LIMIT.

To get the option's current value, use ldap _get option (page 169).
To set the option's value, use Idap_set option (page 275).

Search Result Limits. This parameter or constraint determines how many entries are returned in a
search results. Two functions, ldap _search ext and Idap search_ext_s, have a sizelimit parameter.
To specify no limit, set this parameter to LDAP_NO_LIMIT (0). To use the value in the

LDAP OPT_SIZELIMIT option, set this parameter to -1.

The other search functions use the LDAP_OPT_SIZELIMIT option to determine how many entries
are returned from a search. A value of LDAP_NO_LIMIT (0) means no limit. The default is
LDAP _NO_LIMIT.

To get the current value, use ldap_get option (page 169).
To set the value, use Idap set option (page 275).

Alias Dereferencing. The LDAP OPT DEREEF option determines how aliases are handled during
a search. It supports the following values:

+ LDAP _DEREF NEVER (0X00)

+ LDAP_DEREF_SEARCHING (0x01)
+ LDAP_DEREF_FINDING (0x02)

+ LDAP DEREF ALWAYS (0x03)

The default is LDAP_ DEREF NEVER.

The LDAP DEREF SEARCHING flag indicates that aliases are dereferenced during the search but
not when locating the base object of the search.

The LDAP_DEREF FINDING flag indicates that aliases are dereferenced when locating the base
object but not during the search.

The LDAP_DEREF ALWAYS flag indicates that aliases are dereferenced when locating the base
object and when finding entries.

The LDAP_DEREF NEVER flag indicates that aliases are not dereferenced.
To get the current value, use Idap_get option (page 169).

To set the value, use ldap set option (page 275).

36 NDK: LDAP Libraries for C

1.4.2 Using Search Filters

The LDAP search filter grammar is specified in RFC 2254 and 2251. The grammar uses ABNF
notation.

filter = " (" filtercomp ") "
filtercomp = and / or /not /item

and = "&" filterlist
filterlist = 1*filter

or = "|" filterlist
filterlist = 1*filter

not = "!" filterlist
filterlist = 1*filter

item = simple/present/substring/extensible

simple = attr filtertype value
attr = name | name;binary
filtertype = equal/approx/greater/less
value = data valid for the attribute's syntax

equal — n_n
approx = "~="
greater = ">="
less = "<="

present = attr "=*"

attr = name | name;binary
substing = attr "=" [initial] any [final]
attr = name | name;binary

initial = value
any — mxn *(Value H*ll)
final = value

extensible = attr [":dn"] [":" matchingrule] ":="value

/[":dn] ":" matchingrule ":=" value
/matchingrule = name | OID

For additional options for the attr option, see Section 4.1.5 of RFC 2251.

For additional information on the value option, see Section 4.1.6 of RFC 2251.

IMPORTANT: eDirectory does not support LDAP approximate (~=) matching or extensible
matching rules.

Concepts

37

Operators

Table 1-7 LDAP Filter Operators

Operator Description

= Used for presence and equality matching. To test if an attribute exists in the
directory, use (attributename=*). All entries that have the specified attribute
will be returned. To test for equality, use (attributename=value). All entries
that have attributename=value are returned.

For example, (cn=Kim Smith) would return entries with Kim Smith as the
common name attribute. (cn=") would return all entries that contained a cn
attribute. The = operator can also be used with wildcards to find a substring,
(cn=*ary*) would return mary, hillary, and gary.

>= Used to return attributes that are greater than or equal to the specified value.
For this to work, the syntax type of the attribute must have defined a
mechanism to make this comparison.

For example, (cn>=Kim Smith) would return all entries from Kim Smith to Z.

<= Used to return attributes that are less than or equal to the specified value. For
this to work, the syntax type of the attribute must have defined a mechanism
to make this comparison.

For example, (cn<=Kim Smith) would return all entries from A to Kim Smith.

~= Used for approximate matching. The algorithm used for approximate
matching varies with different LDAP implementations.

The following boolean operators can be combined with the standard operators to form more
complex filters. Note that boolean operator syntax is used different in search filters than in the C and
Java programming languages, but the concepts are the same.

Table 1-8 LDAP Filter Boolean Operators

Boolean Operators Description

& And. For example, (&(cn=Kim Smith) (telephonenumber=555-5555)) would
return entries with common name of Kim Smith and a telephone number of
555-5555.

| Or. For example, (|(cn=Kim Smith)(cn=Kimberly Smith)) would return entries
with common name Kim Smith or Kimberly Smith.

! Not. For example, (!(cn=Kim Smith) would return entries with any cn other
than Kim Smith. Note that the ! operator is unary.

38 NDK: LDAP Libraries for C

Examples:

Table 1-9 Examples for Different Filters

Filter and Description

(cn = Kim Smith)
Returns entries with a common name of Kim Smith.
(&(cn=Kim Smith)(telephonenumber=555*)(emailaddress=*acme.com))

Returns entries with a common name of Kim Smith, a telephone number that starts with 555, and an e-
mail address that ends in acme.com

(!(cn = Chris Jones))
Returns entries that do not have a common name of Chris Jones.
(&(objectClass=inetOrgPerson) (| (sn=Smith) (cn=Chris S*)))

Returns entries that are of type inetOrgPerson with a surname of Smith or a common name beginning
with Chris S.

(&(o=acme)(objectclass=Country)(!(](c=spain)(c=us))

Returns entries that are of type Country from the organization Acme, that are not countries spain or us.

1.4.3 Operational Attributes

Operational attributes are not automatically returned in search results; they must be requested by
name in the search operation. For a list of supported operational attributes in eDirectory 8.5, see
“LDAP Operational Attributes” in LDAP and eDirectory. The LDAP servers in previous releases of
eDirectory do not support operational attributes.

1.5 LDAP Based Backup

LDAP based backup is used to backup the attributes and attribute values for one object at a time.

This feature enables you to make an incremental backup wherein the object is backed up only if
there are changes to the object.

LDAP based backup provides a set of interfaces for backup and restore of eDirectory objects
exposed through the LDAP libraries for C through LDAP extended operations. See
ldap _backup object (page 330) and Idap restore object (page 386).

The LDAP based backup tries to resolve the problems with the current backup and restore. The
problems that this feature resolves are:

+ Gives a consistent interface using which any third party backup applications or developers can
backup eDirectory on all the supported platforms.

+ Provides a backup solution to backup objects incrementally.

Concepts

39

1.6 Referral Handling in LDAP v3

Because of the distributed nature of directory services, operations sent to an LDAP server often
result in a referral to another LDAP server that might contain the requested data or entries.

When an LDAP server does not contain the requested data and a referral is necessary, eDirectory
and your application can be configured to handle them in one of four ways.:

+ Configure eDirectory to return complete data and never referrals to the client (always chain).
¢ Send referrals to the client only for eDirectory servers that do not support chaining.
+ Always send referrals to the client (never chain).

+ [f the second or third option is selected and your application will recieve referrals from
eDirectory, your application can be configured to have the API automatically follow referrals
(anonymous by default or authenticated using a rebind process), or your application can
perform its own manual referral handling.

1.6.1 Configuring eDirectory to Return Complete Data

In eDirectory, the LDAP server can be configured to return complete data and not return referrals.
This is done through the LDAP Group Object using ConsoleOne. For possible configurations in e-
Directory, see the documentation for the LDAP Group Object (http://www.novell.com/
documentation/Ig/edir87/edir87/data/agy2a0m.html).

1.6.2 Configuring eDirectory to Return Referrals

The LDAP server in eDirectory can also be configured to return referrals to your application. This is
done through the LDAP Group Object using ConsoleOne. For possible configurations in Novell e-
Directory, see the documentation for the LDAP Group Object (http://www.novell.com/
documentation/lg/edir87/edir87/data/agy2a0m.html)

1.6.3 Enabling Referral Handling in the Application

The LDAP Libraries for C are initially set up to automatically follow referrals. This feature is
controlled through the LDAP OPT REFERRALS option in the Id session handle.

+ When set to ON (the default value), the libraries follow the referrals and perform an
anonymous bind to the referred servers. In eDirectory, this bind is equivalent to the [Public]
user and grants minimal rights to entries in the directory.

If you want your application to follow referrals but to perform a stronger authentication than an
anonymous bind, you must supply a rebind process (see “Creating a Rebind Process” on
page 41).

¢ When set to OFF, the libraries return LDAP_REFERRAL status (10) on LDAP operations and
continuation references on search operations as part of the search results. When you recieve
LDAP_REFERRAL status the referrals can be retrieved using ldap_get option and specifying
LDAP _OPT REFERRAL LIST as the requested value. This returns a NULL-terminated list
of string pointers containing the referrals.

40 NDK: LDAP Libraries for C

http://www.novell.com/documentation/lg/edir87/edir87/data/agy2a0m.html
http://www.novell.com/documentation/lg/edir87/edir87/data/agy2a0m.html

TIP: To change the setting of the LDAP_OPT REFERRALS option, call the Idap_set option
function with the option parameter set to LDAP_OPT_REFERRALS (see ldap set option

(page 275)).

1.6.4 Creating a Rebind Process
The rebind function must use the following syntax.

int LIBCALL rebind function (

LDAP *1d,
const char “*url,
int request,

ber int t msgid)
{

/* the body must perform a synchronous bind */

}

The 1d parameter must be used by the application to bind to the referred server if the application
wants the libraries to follow the referral.

The url parameter points to the URL referral string received from the LDAP server. The LDAP
application can use the ldap url parse (page 291) function to parse the string into its components.

The request parameter specifies the request operation that generated the referral. For possible
values, see Section 6.8, “Request Message Types,” on page 424.

The msgid parameter specifies the message ID of the request generating the referral.

The libraries set all the parameters when they call the rebind function. The application should not
attempt to free either the 1d or the url structures in the rebind function.

The application is responsible for obtaining the required authentication information (user name,
password, and certificates) associated with the 1d and passing this information to the rebind function.
The rebind function is responsible for performing the synchronous bind.

You must design your application to handle the possibility that the rebind process cannot bind to any
of the referrals (for examle, the servers are down or the authentication information is invalid). When
this happens, the LDAP libraries return either

¢ results with referrals

* search results with search references

1.6.5 Using the Rebind Process

For the libraries to use a rebind process, the application must configure the ld to the following
values:

¢+ LDAP_OPT REFERRALS option must be set to ON (the default value). For configuration
information, see ldap set option (page 275).

¢+ LDAP_REBIND PROC must be set to the rebind function (see Idap set rebind proc
(page 277)).

Concepts

4

When the 1d has the proper settings, the referrals are processed according to the following algorithm.

1. The LDAP server sends a referral back to the libraries.
2. The libraries call the rebind function, setting the Id and url parameters.
3. The application supplies the logic for determining the type of bind.

For example, if the referral is to a server outside of a firewall, the application could decide to do
an anonymous bind rather than a secure bind.

4. The application supplies the bind credentials associated with the 1d (user name, password, and
certificates) and with the bind method (such as simple, SSL, or SASL)

5. The libraries process the rebind function. If successful, the rebind function returns
LDAP_SUCCESS.

If any other value is returned, the referral process stops and either LDAP_REFERRAL is
returned as a result code for the original LDAP operation, or if a search operation, a search
continuation is returned with the search results.

1.6.6 Following Referrals Manually

When eDirectory is configured to return referrals and automatic referral handling is turned off in
your application, the libraries return LDAP_REFERRAL status (10) on LDAP operations and
continuation references on search operations as part of the search results. When you recieve
LDAP_REFERRAL status, referrals can be retrieved using Idap _get option and specifying
LDAP_OPT REFERRALS as the requested value. This returns a NULL-terminated list of string
pointers containing the referrals.

If a referral is returned with no DN field, the library inserts the DN of the original request in the
referral before returning it.

Your application can then determine how to handle each returned referral.

1.6.7 Retrieving Referrals for Non-Search Operations

eDirectory 8.7 can return referrals for non-search operations. See “Enabling Referral Handling in
the Application” on page 40 for details on handling these referrals.

1.6.8 Limiting Referral Hops

Your application can specify the maximum number of referral hops the LDAP libraries will follow.
For example, suppose you set the limit to two. Your application does a search, and the search refers
you to the following:

Server 1 refers you to Server 2—Hop 1
Server 2 refers you to Server 3—Hop 2
Server 3 refers you to Server 4—Hop 3

The libraries will follow the referral through Server 3, but they will not continue to Server 4 because
Server 4 exceeds the hop limit of 2. They return an result code of
LDAP REFERRAL LIMIT EXCEEDED.

To set the referral hop limit, call the Idap _set_option function with the option parameter set to
LDAP _OPT _REFERRAL HOP_LIMIT (see Idap_set option (page 275)).

42 NDK: LDAP Libraries for C

1.7 eDirectory Event System

The eDirectory Event System provides a way for applications to monitor the activity of eDirectory
on an individual server over LDAP. LDAP Event Services are available on eDirectory 8.7.

For additional information on the eDirectory Event System and for a complete listing of LDAP
events, see “LDAP Event Services” in the "LDAP and eDirectory Integration Guide."

1.7.1 Registering to Monitor an Event

The LDAP Libraries for C provide functions to simplify registering to recieve event data. To register
to monitor an event, you call the Idap_monitor_events (page 356) or Idap_monitor_events_filtered
(page 358) function passing an array of EVT EventSpecifier (page 460) or

EVT FilteredEventSpecifier (page 462) structures specifying the events you wish to monitor, and
an event filter if calling Idap_monitor_events_filtered.

These functions send a MonitorEventRequest or FilteredMonitorEventRequest extended operation
to the server. The request is sent asynchronously; it does not wait for a response from the server. The
functions return the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP result code if not.

After a successful call to ldap_monitor_events or Idap_monitor_events_filtered, server responses to
the EventMonitorRequest are retrieved by calling the ldap result (page 239) function. If the return
value of Idap_result is equal to LDAP_RES EXTENDED, it indicates than an error or exceptional
situation occured and events are not monitored. The result is parsed by calling the

ldap parse_monitor_events response (page 366). If the return value of Idap_result is equal to
LDAP RES INTERMEDIATE it indicates that an event has occured. The result should be parsed
by calling Idap_parse ds event (page 360).

Memory allocated by the ldap_parse monitor events_response and the ldap parse ds event
functions must be freed by the application by calling the ldap_event free.

For an example, see monitorevents.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/extensions/monitorevents.c.html)

Filtered Event Monitoring

Filtered event monitoring enables you to limit the events returned to your application by the server,
possibly reducing network traffic and processing in your application.

See Idap _monitor events_filtered (page 358) for additional information.

1.7.2 LBURP

The LDAP Bulk Update/Replication Protocol (LBURP) is used to send asynchronous requests to an
LDAP server. This guarantees that the requests are processed in the order specified by the protocol
and not in an arbitrary order influenced by multiprocessor interactions or the operating system’s
scheduler. LBURP also lets the client send several update operations in a single request and receive
the response for all of those update operations in a single response. This adds to the network
efficiency of the protocol.

Concepts

43

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/extensions/monitorevents.c.html

LBURP works as follows:

The client to an LDAP server.
The server sends a bind response to the client.
The client sends a start LBURP extended request to the server.

The server sends a start LBURP extended response to the client.

A

The client sends zero or more LBURP operation extended requests to the server.

These requests can be sent asynchronously. Each request contains a sequence number
identifying the order of this request relative to other requests sent by the client over the same
connection. Each request also contains at least one LDAP update operation.

6. The server processes each of the LBURP operation extended requests in the order specified by
the sequence number and sends an LBURP operation extended response for each request.

7. After all of the updates have been sent to the server, the client sends an end LBURP extended
request to the server.

8. The server sends an end LBURP extended response to the client.

The LBURP processor in eDirectory also commits update operations to the database in groups to
gain further efficiency in processing the update operations. LBURP can greatly improve the
efficiency of your LDIF imports over a traditional synchronous approach.

1.8 Character Conversions

This section contains reference information on character encoding and a description of UTF-8, the
encoding used by LDAPv3.

1.8.1 A Brief History of Character Encoding

In the early days of computing, 7-bit ASCII was the standard. The need for more characters drove
the creation of a number of 8bit Single Byte Character Sets (SBCS). ISO-8859 for example provided
the 7-bit ASCII characters and many of the accented characters required for Wester Europe.

Asian languages required much more than 256 characters. Multi-byte character sets were developed
using a variable number of bytes per character, such as Shift-JIS or EUC-JP.

Other encodings appeared that were stateful. They used Shift-In/Shift-Out characters, or escape
sequences to switch between encoding schemes.

In an attempt to bring order to this confusion, two separate standards organizations started work on a
Universal Character Set (UCS) which would encode all the characters of all the major languages in
the world. The two organizations ultimately agreed to maintain a consistent encoding, and the ISO-
10646/Unicode standard became widespread. ISO-10646 officially supports a 31-bit code space (0 -
0x7FFFFFFF), while Unicode supports the 21-bit space (0 - 0x10FFFF) of over a million characters.
So far no characters have been assigned beyond the 16-bit Basic Multi-Lingual Plane (BMP). While
the code point value assigned to each character are well defined, there are different ways that the
value may be encoded.

UCS-2 refers to the encoding where each character is a fixed 16-bit length, allowing access to the
BMP.

44 NDK: LDAP Libraries for C

UCS-4 or UTF-32 refers to an encoding where each character is a fixed 32-bit value, allowing direct
access to the entire UCS.

UTF-16 is an encoding where a character is one or two 16-bit values, allowing access to the full
Unicode code space 0 - 0x10FFFF.

1.8.2 UTF-8 Encoding

There are a few problems with using these UCS-2/4 or UTF-16 encodings.

+ Since most characters used today are still from the 7-bit ASCII set, it takes almost twice as
much space to use Unicode.

¢ Itis incompatible with many current APIs.
+ Byte order (big endian/little endian) is an issue.

+ [f data is being sent across a byte stream, and a byte is dropped, all the rest of the 16 bit
Unicode characters will be out of sync and there’s no way to sync up.

To address these problems, a byte-encoded form of Unicode was developed called Unicode
Transformation Format 8-bit Encoding (UTF-8). This is just a simple algorithmic encoding of each
16-bit Unicode character into 1, 2, or 3 bytes. 4 bytes cover the entire Unicode 21-bit space, or 6
bytes to get the full 31-bit address space.

The greatest advantage is that the encoding for all 7-bit ASCII characters is identical in UTF-8. This
solves the wasted space problem nicely, and provides a degree of compatibility with older systems.
Byte order is not an issue since it’s a byte stream.

The encoding of UTF-8 also allows unambiguous determination of the start of a character. By
examining only the first byte, one can determine the number of bytes in the UTF-8 character
sequence. Continuation bytes are easily recognizable, allowing one to detect a missing byte in a
stream.

RFC2279 describes the UTF-8 encoding format in detail. Many other resources on the Web,
including the Unicode Consortium website contain more information.

1.8.3 UTF-8

In the LDAP version 2 specification, strings were limited to the T.61character set, which is basically
7-bit US-ASCII minus several characters (such as tilde, caret, and curly braces). T.61 was a severe
limitation to globalization and efforts to make LDAP a world-wide standard. In LDAP version 3,
strings are to be encoded in UTF-8.

Because 7-bit ASCII characters are encoded identically in UTF-8, many applications continue to use
local text strings with the LDAP C APIs. This works for ASCII characters, but will fail for extended
8-bit characters such as, (e accent) or multi-byte Asian characters.

The correct approach is to make sure all local strings are encoded into UTF-8 before using them in
an LDAP API. Likewise strings returned from the APIs should be converted to local text if required,
such as displaying them with printf.

Novell’s LDAP C SDK provides routines for converting Unicode strings into UTF-8 strings. Both
single character and string versions of these routines are provided. Several string processing routines
are also provided, such as UTF-8 versions of strchr and strtok, next, and prev.

Concepts

45

1.8.4 wchar_t Type

Novell’s SDK conversion routines use the wchar t type. This type is 2 bytes on some machines and
4 bytes on other machines, so care must be taken if wchar_t strings are transported to other systems.
UTF-8 is the most portable way to transfer strings between systems.

wchar t strings will either be UCS-2 or UCS-4 encoded, depending on the size of wchar t. The
advantage to using wchar _t strings is that all the standard wide character string processing routines
may be used, such as wcslen, wcscat, etc.

In summary, LDAP C applications which make the distinction between local and UTF-8 strings, and
handle each properly, will be much easier to internationalize and move into the global marketplace.

1.9 Time Formats

Generalized Time Format. Generalized time represents the values of year, month, day, hour,
minutes, seconds and fractions of a second in any of three forms:

¢ Local time "YYYYMMDDHHMMSS. fff", where fff is optional and is fractions of a second

¢ Greenwich Mean Time (UTC) "YYYYMMDDHHMMSS.fffZ", Z indicates Greenwich Mean
Time

+ Difference between local and UTC time, "YYYYMMDDHHMMSS.fff+-HHMM", the

+HHMM or -HHMM represents the time differential between the local and Greenwich Mean
Times.

UTC Time Format. UTC format represents the values of year (2 digit), month, day, hour, minutes
and optionally seconds.

¢ Local time "YYMMDDHHMMSS", where seconds (SS) is optional

¢ Greenwich Mean Time (UTC), "YYMMDDHHMMSSZ", seconds (SS) is optional and Z
represents Greenwich Mean Time

+ Difference between local and UTC time, "YYMMDDHHMMSS+-HHMM", seconds (SS) is
optional and +HHMM or -HHMM represents the time differential between local and
Greenwich Mean Times.

1.10 Controls and Extensions

Controls and Extensions were added to version 3 of the LDAP protocol. In version 2, there was no
standard mechanism to extend the protocol, requiring developers to extend the protocol non-
standard ways. In version 3, extensions and controls were defined to provide consistent expansion of
the protocol.

NOTE: The eDirectory and LDAP Integration guide contains a good introduction to LDAP controls
and extensions, and contains information and limitations you need to be aware of when using these
controls with eDirectory. It is recommended that you read the “LDAP Controls” and the “LDAP
Extensions” chapters in the eDirectory and LDAP Integration guide.

46 NDK: LDAP Libraries for C

1.10.1 Controls

The following table contains a list of controls supported in the LDAP Libraries for C. For examples
using these controls, see the LDAP Libraries for C “Sample Code” on page 18.

Table 1-10 Supported Controls in the LDAP Libraries for C

oD

Description

1.2.840.113556.1.4.473
1.2.840.113556.1.4.474
2.16.840.1.113730.3.4.9
2.16.840.1.113730.3.4.10
2.16.840.1.113730.3.4.3
2.16.840.1.113730.3.4.7

Sever-side sort control request
Server-side sort control response
Virtual list view request

Virtual list view response
Persistent search

Entry change notification

¢ Server Side Sort. Returns results from a search operation in sorted order. This can be used to
off-load processing from the client, or if you cannot sort the results on the client.

¢ Vertical List View. Works in conjunction with the Server Side Sort control to provide a

dynamic view of a scrolling list.

¢ Persistent Search & Entry Change Notification. Performs a continuous search notifying the

application of changes as they occur.

1.10.2 Extensions

The following table contains a list of extensions supported in the LDAP Libraries for C. For
examples using these extensions, see the LDAP Libraries for C “Sample Code” on page 18.

Table 1-11 Supported Extensions in the LDAP Libraries for C

oD

Name

2.16.840.1.113719.1.27.100.1
2.16.840.1.113719.1.27.100.2
2.16.840.1.113719.1.27.100.3
2.16.840.1.113719.1.27.100.4
2.16.840.1.113719.1.27.100.5
2.16.840.1.113719.1.27.100.6
2.16.840.1.113719.1.27.100.7
2.16.840.1.113719.1.27.100.8
2.16.840.1.113719.1.27.100.9
2.16.840.1.113719.1.27.100.10

ndsToLdapResponse
ndsToLdapRequest
splitPartitionRequest
splitPartitionResponse
mergePartitionRequest
mergePartitionResponse
addReplicaRequest
addReplicaResponse
refreshLDAPServerRequest

refreshLDAPServerResponse

Concepts

47

(o]]»)

Name

2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.
2.16.840.1.

113719.1.27.100.11
113719.1.27.100.12
113719.1.27.100.13
113719.1.27.100.14
113719.1.27.100.15
113719.1.27.100.16
113719.1.27.100.17
113719.1.27.100.18
113719.1.27.100.19
113719.1.27.100.20
113719.1.27.100.21
113719.1.27.100.22
113719.1.27.100.23
113719.1.27.100.24
113719.1.27.100.25
113719.1.27.100.26
113719.1.27.100.27
113719.1.27.100.28
113719.1.27.100.29
113719.1.27.100.30
113719.1.27.100.31
113719.1.27.100.32
113719.1.27.100.33
113719.1.27.100.34
113719.1.27.100.35
113719.1.27.100.36
113719.1.27.100.37
113719.1.27.100.38
113719.1.27.100.39
113719.1.27.100.40
113719.1.27.100.41
113719.1.27.100.42

removeReplicaRequest
removeReplicaResponse
partitionEntryCountRequest
partitionEntryCountResponse
changeReplicaTypeRequest
changeReplicaTypeResponse
getReplicalnfoRequest
getReplicalnfoResponse
listReplicaRequest
listReplicaResponse
receiveAllUpdatesRequest
receiveAllUpdatesResponse
sendAllUpdatesRequest
sendAllUpdatesResponse
requestPartitionSyncRequest
requestPartitionSyncResponse
requestSchemaSyncRequest
requestSchemaSyncResponse
abortPartitionOperationRequest
abortPartitionOperationResponse
getBindDNRequest
getBindDNResponse
getEffectivePrivilegesRequest
getEffectivePrivilegesResponse
setReplicationFilterRequest
setReplicationFilterResponse
getReplicationFilterRequest
getReplicationFilterResponse
splitOrphanPartitionRequest
splitOrphanPartitionResponse
removeOrphanPartitionRequest

removeOrphanPartitionResponse

48 NDK: LDAP Libraries for C

1.11 Runtime Version of the Library Files

The licenses governing this SDK grant permission to redistribute the LDAP Libraries for C with
your application. You should review the enclosed licenses to ensure compliance.

These files are also shipped with eDirectory and the service packs. However, the NDK updates them
more frequently, so you may have a newer version than the version shipping with eDirectory. In
some instances, you may have older versions. If you select to redistribute the files, make sure your
installation program does not overwrite newer versions.

The following sections provide few guidelines for the following platforms:

+ “Windows (NT, 95, 98, 2000, XP) & Windows Vista 64-bit” on page 49
+ “NetWare” on page 50
¢ “UNIX 32-bit (Solaris, Linux, AIX, HP-UX) & UNIX 64-bit (Linux)” on page 51

1.11.1 Windows (NT, 95, 98, 2000, XP) & Windows Vista 64-bit

On the Windows platforms, you can copy the LDAP Libraries for C files to the same directory in
which you install your program or to a directory that is part of the system's path variable. Copy the
non-debug version of the following library files to that directory:

ldapsdk.dll
ldapssl.dll
ldapx.dll
nmas.dll

You also need the message file. Copy the nls directory and all its subdirectories and files to the same
directory you copied the library files, keeping the 1dapsdkmsg.d11 file in the same relative
directory structure.

Also include the following license and copyright files:

copyright.hspencer
copyright.openldap
license.openldap
license.openssl

If your application uses any of the LDAP tools, these executables also need to be copied to the same
directory as the library files. The ice utility requires the following files:

ice.cfg
ice.exe
ldaphdlr.dll
1dif.dl1l
sal.dll
zone.dll

Concepts

49

1.11.2 NetWare

Two versions of the LDAP libraries are provided for NetWare: A Clib version and a LibC version.
The installation process extracts the files and creates two directories; one containing the 1ibC
version, and another containing the Clib version. The following tables list these directories and their
contents:

Clib

[install location]\NetWare\Clib

Table 1-12 Clib Version of the LDAP Libraries

Folder Description

bin Libraries. The Clib NLMs are:

¢ ldapsdk.nlm
¢ ldapssl.nlm
¢ ldapx.nlm

imports Import files for linking

inc Include files

tools Ldap tools (add, delete, modify, search)
samples Sample programs

LibC

[install location]\NetWare\LibC

Table 1-13 LibC Version of the LDAP Libraries

Folder Description

bin Libraries. The LibC NLMs are:

¢ ldapsdk.nlm
¢ ldapssl.nlm
¢ ldapx.nlm

imports Import files for linking

inc Include files

tools Ldap tools (add, delete, modify, search)
samples Sample programs

Copy the non-debug version of either the Clib or LibC version of the library files to the
sys:\systemn directory with your application:

50 NDK: LDAP Libraries for C

ldapsdk.nlm
ldapssl.nlm
ldapx.nlm

You also need to copy the nls directory and its subdirectories the sys:\system directory,
keeping the 1dapsdk.msg file in the same relative directory structure.

If your application uses any of the LDAP tools, these nlms also need to be copied to the
sys: \system directory. The ice utility requires the following files:

delim.nlm
dirload.nlm
ice.cfg
ice.nlm
ldaphdlr.nlm
1dif.nlm
sal.nlm
zone.nlm

1.11.3 UNIX 32-bit (Solaris, Linux, AlX, HP-UX) & UNIX 64-bit
(Linux)

The library files and the application's binaries must be copied to a directory where the user has all
access permissions. In the following descriptions, this directory is labelled the <install directory>.
Copy the non-debug version of the following libraries files to the <install directory>/
cldapsdk/1ib directory:

For Solaris, Linux, AIX:

libldapsdk.so
libldapssl.so
libldapx.so

For HP-UX:

libldapsdk.sl
libldapssl.sl
libldapx.sl

If your application uses any of the LDAP tools, these files also need to be copied to the <install
directory>/cldapsdk/tools directory. The ice utility requires the following files:

For Solaris, Linux, AIX:

libldaphdlr.so
libdelim.so
libdirload.so
libldif.so

For HP-UX:

libldaphdlr.sl

Concepts

51

libdelim.sl
libdirload.sl
libldif.sl

Copy your application binaries to the <install directory>/cldapsdk/bin directory.

Copy the locale directory and its subdirectories to the <install directory>/cldapsdk/
11D directory, keeping the 1dapsdk.mo file in the same relative directory structure.

Export the following:

For Solaris and Linux: export LD LIBRARY PATH=<install directory>/
cldapsdk/1lib

For AIX: export LIBPATH=<install directory>/cldapsdk/lib

For HP-UX: export SHLIB PATH=<install directory>/cldapsdk/1lib

1.12 Internationalization

The LDAP Libraries for C are enabled for internationalization. Message files are supplied for 12
major languages. These message files contain the text strings associated with each defined LDAP
error code. When an application calls Idap_err2string, for example, the error message is returned
translated into the appropriate language. If an appropriate language file is not present on the system,
English strings are returned.

1.12.1 File Locations

Table 1-14 Location Details of the Message Files

Platform Location

NetWare SYS:system\nls\<language>\ldapsdk.msg

Windows nls\<language>\ldapsdkmsg.dll

Unix <install directory>/cldapsdk/lib/locale/<language>/

LC MESSAGES/ldapsdk.po

1.12.2 Language Directory Names

Table 1-15 Language Directory Names

Language NetWare Windows Unix
Chinese Simplified 1 chineses zh CN
English 4 english en
French 6 francais fr
German 7 deutsch de
Italian 8 italiano it

52 NDK: LDAP Libraries for C

Language NetWare Windows Unix
Japanese 9 nihongo ja
Korean 10 korean ko
Portugese 12 portugue pr
Russian 13 russki ru
Spanish 14 espanol es
Chinese Traditional 16 chineset zh TW
Polish 17 polski pl

Concepts

53

54 NDK: LDAP Libraries for C

Tasks

This chapter provides step-by-step instructions for a few of the common tasks most LDAP
applications perform. See DeveloperNet University (http://developer.novell.com/education/
codeproject.html) for C LDAP tasks that

¢ Create an authenticated connection

¢ Create an eDirectory entry

¢ Read attribute values

¢ Read and write stream attribute values

¢ Search for attribute values

+ Write attribute values

2.1 Establishing an SSL Connection

To establish an SSL connection, both the client and the LDAP server must be set up to use SSL. For
instructions, see Section 1.3, “Authentication and Security,” on page 26.

To establish the SSL connection, call the following functions.

1 Initialize the SSL library by calling the ldapssl_client_init function.
2 Create an LDAP session handle (1d) by calling the Idapssl_init function.

3 Establish an authenticated SSL connection by calling the 1dap simple bind_s function with a
login distinguished name and password.

4 When you are finished with the connection, call the ldap _unbind function to free the memory
associated with the 1d.

5 To uninitialize the SSL library and free the associated memory, call the 1dapssl_client deinit
function.

For sample code, see sslbind.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

2.2 Reading the Root DSE

Reading the root DSE returns information about support of the following features of the LDAP
server:

¢ LDAP versions (2 and 3)
+ LDAP controls

+ Schema name

With the schema name, you can then extend the schema or read its definitions. You must establish an
LDAP v3 connection to read the DSE.

Tasks

55

http://developer.novell.com/education/codeproject.html
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

To read the DSE, call the following functions.

1

Set the LDAP version to LDAP v3 by calling the 1dap_set option function with the option
parameter set to LDAP_OPT PORTOCOL_VERSION and the invalue parameter set to
LDAP_VERSION3.

2 Initialize a session and obtain an LDAP session handle (1d) by calling the 1dap _init function.

w

Establish an authenticated connection by calling the ldap _simple bind_s function.

4 Read the DSE by calling the 1dap_search_ext s function. Set the search base to NULL, the

o ©O©W 00 N O O’

search filter to (objectclass=*), and the scope to LDAP_SCOPE_BASE.
Obtain the DSE entry from the results by calling the Idap first entry function.
Obtain the first attribute by calling the 1dap_first_attribute function.

Obtain the other attributes by calling the ldap _next_attribute function.

Obtain the values for the attributes by calling the ldap _get values function.
Free the attributes and values by calling the Idap_memfree function.

Free the memory from the search results by calling the ldap _msgfree function.

When you are done with the session handle, call the Idap unbind function to free the 1d and the
associated memory.

For sample code, see getdse.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

2.3 Adding an Entry

To add an entry to the directory, the client must have create permissions to the container that will be
the entry's parent container. Entries can be created programmatically or from an LDIF file. (For
more information on using an LDIF file, see “Adding Entries”.)

To add an entry programmatically, complete the following steps.

1

5

Create an LDAPMod structure for each attribute that will be added with the entry.

You need a structure for each attribute. For example, an entry with a base class of
inetOrgPerson requires LDAPMod structures for the following attributes: cn, sn, and
objectClass. If you want the entry to log in to the directory, the entry also requires a structure
for the userPassword attribute.

In each structure, set the modification operation to LDAP_MOD_ADD and the type to the
name of the attribute. Add a NULL-terminated string of values for each attribute.

Add each structure to a NULL-terminated array of LDAPMod structures.
Set the dn for the entry.
The containers in the entry's dn must already exist in the directory.

Call the Idap _add ext s function to add the entry.

For sample code, see addentry.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

56 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

2.4 Modifying an Entry

To modify an entry, the client must have write permissions to the attributes that are being modified.

1 Create an LDAPMod structure for each attribute that will be modified.

2 Set the modification operation, type, and value in each structure.
To add a value even when it may already exist, set the operation to LDAP_ MOD REPLACE.
To add a value and report an error if it already exists, set the operation to LDAP_ MOD_ ADD.
To delete an existing value, set the operation to LDAP_MOD_DELETE.

3 Add each structure to a NULL-terminated array of LDAPMod structures.

4 Call ldap_modify_ext s to modify the specified entry.

For sample code, see modattrs.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

2.5 Modifying an Entry's Password

eDirectory has a number of restricts that prevent password modification. The user can have
insufficient rights for the following reasons:

¢ The user is not a supervisor of the entry.

*

The flag that allows user to change the password is false.
¢ The password unique flag is true and the password supplied is matches a previous password.

+ A minimum length for the password has been set and the password is too short.

*

The user did not supply the old password value with the new value in the same operation.

Passwords in eDirectory are stored as RSA public and private key pairs. The Novell LDAP server
uses the userPassword attribute to generate these key pairs for an LDAP client.

+ NDS 8.17 or higher is required for users to change their own passwords.

¢ NDS 7.xx is required for an administrator to change user passwords.
If the user has sufficient rights, the process is similar to modifying any attribute of an entry. For a
user to change his or her own password, complete the following steps.

1 Create two LDAPMod structures for the userPassword attribute.

2 In the first LDAPMod structure, set the modification operation to LDAP_MOD DELETE, the
modification type to "userPassword", and the value to the current password.

3 In the second LDAPMod structure, set the modification operation to LDAP_MOD_ ADD, the
modification type to "userPassword", and the value to the new password.

4 Add the structures to a NULL-terminated array of LDAPMod structures.
5 Call ldap_modify ext s to modify the specified entry's password.

For sample code that allows a user to change his or her password, see modpass.c (http://
developer.novell.com/ndk/doc/samplecode/cldap sample/index.htm)

For sample code that allows an administrator to set a password, see setpass.c (http://
developer.novell.com/ndk/doc/samplecode/cldap sample/index.htm).

Tasks

57

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm
http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

The user can also change the password in one LDAP modification. To change the password in a
single operation:

dn: cn=test,o=org
changetype: modify
delete: userpassword
userpassword: pass

add: userpassword
userpassword: password

2.6 Extending the Schema

The eDirectory schema can be extended through LDAP programmatically using LDAP functions or
using an LDIF file with a utility such as the “Novell Import Convert Export Utility” and
“ldapmodify”.

The following steps give a simple example how to programmatically extend the schema by creating
an auxiliary class that uses existing attributes.

1 Create a NULL-terminated string that defines the OID, the class name, description, super class,
class type, must attributes, and may attributes. RFC 2252 defines the format of the string.

It should look similar to the following definition for the TestAuxClass.

char *auxClassDefVals[] = { "(1.1.1.1.1.1111
NAME ’'TestAuxClass’
DESC ’'Useless ObjectClass for testing’
SUP ’top’
AUXILIARY
MUST (operator $ server)
MAY (status))"
, NULL };

NOTE: You need to use a valid OID when extending the schema. To register and obtain a
unique OID for your group of attribute and class extensions, see the Novell Developer Support
Web site (http://developer.novell.com/support)

2 Create an LDAPMod structure for the class.
¢ Set the mod_op to LDAP_MOD_ADD
+ Set the mod_type to "objectclasses"
+ Set the mod values to the string (in the example above, to auxClassDefVals)
3 Add each structure to a NULL-terminated array of LDAPMod structures.
4 To add the class, call Idap_modify ext s with the parameters set to the following values:

¢ dn to "cn=schema" (the name of the schema is obtained by reading the root DSE; see
Section 2.2, “Reading the Root DSE,” on page 55)

+ mods to the NULL-terminated array of LDAPMod structures you have created
+ serverctrls to NULL
¢ clientctrls to NULL

58 NDK: LDAP Libraries for C

http://developer.novell.com/support
http://developer.novell.com/support

Standard LDAP Functions

This chapter documents the standard LDAP functions defined by RFCs and Internet drafts
maintained by IETF. For information on the LDAP extensions Novell provides to perform
eDirectory partition and replica operations, see “LDAP Extension Functions on page 325.

Standard LDAP Functions 59

ber_alloc_t

Constructs and returns an empty BerElement.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

BerElement *ber alloc t (
int options);

Parameters

options

(IN) Specifies the options used to create a BerElement.

Return Values

Returns a newly created BerElement on success; otherwise, returns a NULL pointer on failure.

Remarks

The options parameter specifies a bitwise OR of options to be used when encoding a new
BerElement. You should always supply the following option:

LBER_USE_DER 0x01 Specifies that lengths will always be encoded in the minimum
number of octets. However, this option does not cause values of
sets to be rearranged in tag and byte order or for default values to
be removed, so these options are not sufficient for generating DER
output as defined in the X.509 and X.680 specifications. If you order
set values and remove default values correctly, you can produce
output according to the defined specifications.

Unrecognized option bits are ignored.
Calls to the ber_printf function append bytes to the end of the BerElement.

Each BerElement structure allocated by the ber_alloc_t function should be freed by a call to the
function.

See Also

ber free (page 66)

60 NDK: LDAP Libraries for C

ber_bvdup

Returns a copy of a berval structure.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

struct berval *ber bvdup (
const struct berval *bv);

Parameters

bv

(IN) Points to a structure to return.

Return Values

Returns a pointer to a berval structure on success; otherwise, returns NULL on failure.

Remarks

The bv_val field in the returned berval structure points to a different area of memory than the
original bv_val field of the bv parameter.

The berval structures created by the ber bvdup function should be freed by a call to the ber bvfree
function.

See Also

ber bvfree (page 63)

Standard LDAP Functions 61

ber_bvecfree

Frees an array of returned berval structures.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

void ber bvecfree (
struct berval **bv);

Parameters

bv

(IN) Points to the array of berval structures that are to be freed.

Remarks

Each structure in the array is freed by calling the ber_bvfree function, then the array itself is freed.

If the bv parameter is NULL, the ber bvfree function does nothing.

62 NDK: LDAP Libraries for C

ber_bvfree

Frees a returned berval structure.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

void ber bvfree (
struct berval *bv);

Parameters

bv
(IN) Points to the berval structure to be freed.

Remarks

Both the bv_val string in the berval structure and the structure itself are freed.

If the bv parameter is NULL, this function does nothing.

Standard LDAP Functions 63

ber_first_element

Positions the state of a BerElement to its first element and returns the type of the first element.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
ber tag t ber first element (
BerElement *ber,

ber len t *lenPtr,
char **opaquePtr) ;

Parameters

ber

(IN) Points to the first element in the constructed type.

lenPtr

(OUT) Is used for internal use only. Use this value in the subsequent call to the
ber next_element function.

opaquePtr

(OUT) Is used for internal use only.Use this value in the subsequent call to the
ber next_element function

Return Values

On success, returns a tag indicating the type of the first element. Returns LBER_DEFAULT if there
are no elements.

Remarks

Use the ber_scanf function to obtain the value of the first element.

See Also

ber scanf (page 72)

64 NDK: LDAP Libraries for C

ber_flatten

Allocates a berval structure whose contents are a BER encoding of the specified BerElement.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
int ber flatten (

BerElement *ber,
struct berval **pvPtr) ;

Parameters

ber

(IN) Points to the encoded contents for a BerElement.

bvPtr
(OUT) Points to the returned berval structure.
Return Values

Returns zero on success; otherwise, returns -1 on failure.

Remarks

The berval structure should be freed by calling the ber_bvfree function.
The ber_flatten function returns -1 if all '{' and '}' format modifiers are not properly matched.

Ber_init and ber_flatten are opposite functions. Ber_init converts a berval to a BerElement, and
ber_flatten converts a BerElement to a berval.

See Also

ber_bvfree (page 63), ber_init (page 67)

Standard LDAP Functions

65

ber free

Frees a BerElement structure allocated by the ber_alloc_t or the ber_init function.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
void ber free (

BerElement *ber,
int fbuf) ;

Parameters

ber

(IN) Points to a BerElement to be freed.

fbuf
(IN) Flag indicating if the internal buffer associated with the BerElement should also be freed.

1 frees the internal buffer, 0 does not free it.

Remarks

BerElements allocated by the library and returned to the application should be freed.

Note that when ldap_first attribute returns a BerElement, it should be freed with ber free(ber, 0).
The internal buffer should not be freed since it points to the original searchResults.

If the ber parameter is NULL, the ber_free function does nothing.

See Also

ber_alloc_t (page 60), ber_init (page 67)

66 NDK: LDAP Libraries for C

ber_init

Allocates and initializes a new BerElement structure with a copy of the data in the given berval
structure.

Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

BerElement *ber init (
const struct berval *bv);

Parameters
bv

(IN) Points to the berval structure with which to initialize the new BerElement.
Return Values

Returns a new BerElement with the specified data on success; otherwise, returns a NULL pointer on
failure.

Remarks

BerElements allocated with the ber_init function should be freed by calling the ber_free function.

Ber init and ber_flatten are opposite functions. Ber_init converts a berval to a BerElement, and
ber flatten converts a BerElement to a berval.

See Also

ber_free (page 66), ber_flatten (page 65)

Standard LDAP Functions

67

ber_next_element

Positions the state of a BerElement to the next element and returns its type.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
ber tag t ber next element (
BerElement *ber,

ber len t *lenPtr,
char *opaquePtr) ;

Parameters

ber

(IN) Points to a BerElement structure.

lenPtr

(OUT) Is used for internal use only. Points to the value returned by the ber_first element
function. On subsequent calls, points to the value returned by the ber next_element function.

opaquePtr

(OUT) Is used for internal use only. Points to the value returned by the ber first element
function. On subsequent calls, points to the value returned by the ber next element function.

Return Values

On success, returns a tag indicating the type of the next element. Returns LBER _DEFAULT if there
are no further elements.

Remarks

Use the ber_scanf function to obtain the value of the element.

See Also

ber scanf (page 72)

68 NDK: LDAP Libraries for C

ber_peek_tag

Returns the tag and length of the next element in a BerElement.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
ber tag t ber peek tag (

BerElement *ber,
ber len t *lenPtr) ;

Parameters

ber

(IN) Points to the BerElement.

lenPtr
(OUT) Points to the length of next element to be parsed.
Return Values

Returns the tag of the next element to be parsed on success; returns LBER DEFAULT if there is no
further data to be read.

Remarks

The decoding position within the ber parameter is not changed and will not affect the future use of
the ber parameter.

Standard LDAP Functions

69

ber_printf

encodes data items info a BerElement.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
int ber printf (
BerElement *ber,

const char *fmt,
Le)g

Parameters

ber
(IN) Points to a BerElement.

fmt
(IN) Points to a format string.

(IN) Specifies data values for each tag in the format string.

Return Values

Returns a nonnegative number on success; otherwise, returns -1 on failure.

Remarks

The ber_printf function encodes a BerElement in a similar manner as the sprintf function. However,
the ber_printf function must keep state information in the ber parameter so that this function can be
called subsequently to append information to the end of a BerElement.

Similar to the sprintf function, each character in the fmt parameter refers to an argument to the
ber_printf function.

The fmt parameter can have the following characters.

b Boolean The next parameter is a ber_int_t, which contains either 0 for False or Oxff for
True.

70 NDK: LDAP Libraries for C

B Bitstring

e Enumerated

i Integer

n NULL

o Octet string

O Octet string

s Octet string

t Tag

% Several octet
strings

V Several octet
strings

{ Begin sequence

} End sequence

[Begin set

| End set

The next two parameters are a char* pointer to the start of the bitstring, followed
by a ber-len-t, which contains the number of bits in the bitstring. A bitstring
element is output in primitive form. If this character is not preceded by the 't'
modifier, the 0x03U tag is used for the element.

The next parameter is a ber_int_t, which contains the enumerated value in the
host's byte order. An enumerated element is output. If this character is not
preceded by the 't' modifier, the 0xOAU tag is used for the element.

The next parameter is a ber_int_t, which contains the integer in the host's byte
order. An integer element is output. If this character is not preceded by the 't'
modifier, the 0x02U tag is used for the element.

No parameter is needed. An ASN.1 NULL element is output. If this character is
not preceded by the 't' modifier, the 0x05U tag is used for the element.

The next two parameters are a char* pointer, followed by a ber_len_t that
contains the length of the string. The string can contain NULL bytes and do not
have to be zero terminated. An octet string element is output in primitive form. If
this character is not preceded by the 't' modifier, the 0x04U tag is used for the
element.

The next parameter is a pointer to a berval structure. If this character is not
preceded by the 't' modifier, the 0x04U tag is used for the element.

The next parameter is a char* pointer to a zero-terminated string. An octet string
is output in primitive form and does not include the trailing \0' (NULL) byte. If this
character is not preceded by the 't' modifier, the 0x04U tag is used for the
element.

The next parameter is a ber_tag_t, which specifies the tag to override the next
element to be written to the BerElement.

The next parameter is a char**, an array of char* pointers to zero-terminated
strings. The last element in the array must be a NULL pointer. The octet strings
do not include the trailing \O' (NULL) byte. A construct similar to '{v} is used to
get an actual sequence of octet strings. The 't' modifier cannot be used with this
character.

A NULL-terminated array of berval structure pointers is supplied. Note that a
construct similar to '{V}' is used to get an actual sequence of octet strings. The 't'
modifier cannot be used with this character.

No parameter is needed. If this character is not preceded by the 't' modifier, the
0x30U tag is used for the element.

No parameter is needed. The 't' modifier cannot be used with this character.

No parameter is needed. If this character is not preceded by the 't' modifier, the
0x31U tag is used for the element.

No parameter is needed. The 't' modifier cannot be used with this character.

Each use of a '{' character should be matched with a '}' character, either later in the format string or
in the format string of a subsequent call to ber_printf for that specific BerElement. The same rules
applies to the '[' and ']’ characters.

Standard LDAP Functions

7

ber_scanf

Decodes a BerElement, similar to the sscanf function.

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>
ber tag t ber scanf (
BerElement *ber,

const char *fmt,
Le)g

Parameters

ber

(IN) Points to a BerElement returned by the ber_init function.

fmt

(IN) Points to the format modifiers to use when interpreting the BerElement bytes.

(OUT) Returns pointers to data values returned by the function.

Return Values

Returns a non-LBER_ERROR value on success; otherwise, returns LBER _ERROR on failure.

Remarks

The ber_scanf function keeps some of the state information with the ber parameter so that the
ber_scanf function can be called iteratively to sequentially read from the BerElement.

The results of successfully calling the ber_scanf function are stored in additional parameters.

The fmt parameter can have the following values.

a Octet string A char* pointer must be supplied. Memory is allocated and filled with the contents
of the octet string (zero-terminated). The pointer to the string is stored in the
parameter. The returned value should be freed by calling the Idap_memfree
function. The element tag must indicate the primitive form (constructed strings
are not supported) but is otherwise ignored and discarded during the decoding.
This character cannot be used with octet string that contain NULL bytes.

72 NDK: LDAP Libraries for C

Boolean

Bitstring

Enumerated

Integer

Length

NULL

Octet string

Octet string

Octet string

Tag

Several octet
strings

Several octet
strings

Skip element

Begin sequence

End sequence

A pointer to ber_int_t must be supplied. The stored value will be zero for FALSE
or nonzero for TRUE. The element tag must indicate the primitive form but is
otherwise ignored during the decoding.

A char** parameter must be supplied that will point to the allocated bits. This is
followed by a ber_len_t* parameter that will point to the length (in bits) of the
returned bitstring. The Idap_memfree function should be called to free the
bitstring. The element tag must indicate the primitive form (constructed bitstrings
are not supported) but is otherwise ignored during the decoding.

A pointer to ber_int_t must be supplied. The stored value will be in host byte
order. The element tag must indicate the primitive form but is otherwise ignored
during the decoding. The ber_scanf function returns an error if the enumerated
value cannot be stored in a ber_int_t.

A pointer to ber_int_t must be supplied. The stored value will be in host byte
order. The element tag must indicate the primitive form but is otherwise ignored
during the decoding. The ber_scanf function returns an error if the integer cannot
be stored in a ber_int_t.

A pointer to a ber_len_t must be supplied. The length of the next element in bytes
is returned.

No parameter is needed. The element is verified to have a zero-length value and
is skipped. The tag is ignored.

A berval * parameter must be supplied, pointing to an existing empty berval
structure. The buffer inside the berval is allocated as required and should be
freed with the ldap_memfree function when done.

A berval ** parameter must be supplied, which will point to an allocated berval
structure that contains the octet string and its length upon return. The ber_bvfree
function should be called to free the allocated memory. The element tag must
indicate the primitive form (constructed strings are not supported) but is
otherwise ignored during the decoding.

A char * buffer must be supplied, point to an existing buffer. It must be followed by
a ber_len_t * parameter. The object of this pointer contains the size of the buffer
on input and is replaced with the size of the data written to the buffer on output.

A pointer to ber_tag_t must be supplied. The stored value will be the tag of the
next element in the BerElement ber parameter and represented so it can be
written using the 't' modifier of the ber_printf function. The decoding position
within the ber parameter is not changed and can be used in the future.

A char*** parameter must be supplied, which points to an allocated, NULL-
terminated array of char* pointers that contain the octet strings upon return.
NULL is stored if the sequence is empty. The Idap_memfree function should be
called to free each element of the array and the array itself. The sequence tag
and the octet string tags are ignored.

A berval*** structure pointer must be supplied, which points to an allocated,
NULL-terminated array of berval* structure pointers that contain the octet strings
and their lengths upon return. NULL is stored if the sequence is empty. The
ber_bvecfree function can be called to free the allocated memory. The sequence
tag and the octet string tags are ignored.

The next element is skipped. No parameter is needed.
No parameter is needed. The initial sequence tag and length are skipped.

No parameter is needed.

Standard LDAP Functions

73

[Begin set No parameter is needed. The initial set tag and length are skipped.

] End set No parameter is needed.

74 NDK: LDAP Libraries for C

ber_skip_tag
Skips the next element of a BerElement, returning its length and tag.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h> or <lber.h>

ber tag tber skip tag(
BerElement *ber,
ber len t *lenPtr);

Parameters

ber
(IN) Points to the BerElement.

lenPtr
(OUT) Points to the length of the skipped element.

Return Values

Returns the tag of the element that was skipped on success; otherwise, returns LBER_DEFAULT if
there is no further data to be read.

Standard LDAP Functions 75

Idap_abandon

Abandons an asynchronous LDAP operation already in progress. This function has been deprecated;
LDAP v3 clients should use ldap_abandon_ext (page 78).

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap_ abandon (

LDAP *1d,
int msgid) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

msgid
(IN) Specifies the message ID of the asynchronous LDAP operation to abandon.

Return Values

0 Success
-1 Failure
Remarks

The msgid parameter must specify a message ID returned by an outstanding asynchronous LDAP
operation, such as ldap_search or Idap modify.

The ldap_abandon function checks to see if the results of the operation has already come in.

¢ Ifnot, it sends an LDAP abandon operation to the LDAP server.

¢ If the results have already come in, the LDAP operation cannot be abandoned.

If the Idap _abandon function returns -1, use the ldap _get option function with the option parameter
set to LDAP_OPT RESULT_ CODE to retrieve the error code from the LDAP session handle.

76 NDK: LDAP Libraries for C

See Also

ldap _abandon_ext (page 78)

Standard LDAP Functions 77

Idap_abandon_ext

Abandons an asynchronous LDAP operation already in progress using LDAP client or server
controls.

LDAP Version: v3
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_abandon ext (
LDAP *1d,
int msqgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters

1d
(IN) Points to the handle for the LDAP session.
msgid
(IN) Specifies the message ID of the asynchronous LDAP operation to abandon.

serverctrls

(IN) Points to a list of LDAP server controls to use with the abandon operation. Use NULL to
specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
abandon operation. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x51 LDAP_SERVER_DOWN

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

78 NDK: LDAP Libraries for C

0x5A LDAP_NO_MEMORY

Remarks

The msgid parameter must specify a message ID returned by an outstanding asynchronous LDAP
operation, such as ldap_search or Idap modify.

The ldap_abandon function checks to see if the results of the operation has already come in.

¢ Ifnot, it sends an LDAP abandon operation to the LDAP server.

¢ If the results have already come in, the LDAP operation cannot be abandoned.

eDirectory does not currently support any controls to use with an abandon operation.

See Also

ldap abandon (page 76)

Standard LDAP Functions 79

Idap_add

Asynchronously adds an entry to the directory. This function has been deprecated; LDAP v3 clients
should use Idap _add ext (page 82).

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_add (
LDAP *1d,
const char *dn,
LDAPMod **attrs);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry to add, for example: "o=novell", "ou=provo",
"cn=kim"

All components of the dn must exist except for the leaf component. The leaf component name
must be unique within the container.

attrs

(IN) Points to a NULL terminated array of LDAPMod structures that contain the attributes and
value to add with the entry. All mandatory attributes must have values or the operation fails.

Return Values

>0 Message ID of request
-1 Failure
Remarks

To obtain the results of the operation, call the Idap_result function with the returned message ID.

80 NDK: LDAP Libraries for C

For a list of mandatory attributes for an entry see the LDAP server's schema. For eDirectory, see
NDK: Novell eDirectory Schema Reference.

See Also

ldap_add s (page 87), Idap_add_ext (page 82), Idap_add_ext s (page 84), ldap_modify (page 182)

Standard LDAP Functions 81

Idap_add_ext

Asynchronously adds an entry to the directory using LDAP client or server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap add ext (

LDAP *1d,
const char *dn,
LDAPMod **attrs,

LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry to add, for example: "o=novell", "ou=provo",
"cn=kim"

All components of the dn must exist except for the leaf component. The leaf component name
must be unique within the container.

attrs

(IN) Points to a NULL-terminated array of LDAPMod structures that contain the attributes and
values to add with the entry. All mandatory attributes must have values or the operation fails.

serverctrls

(IN) Points to an array of LDAPControl structures that list the server controls to use with the
add. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
add. Use NULL to specify no client controls.

msgidp
(OUT) Points to the message ID of the request when the add request succeeds.

82 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

To obtain the results of the operation, call the ldap_result function with the returned message ID.

For a list of mandatory attributes for an entry see the LDAP server's schema. For eDirectory, see
NDK: Novell eDirectory Schema Reference.

If you are adding an entry that logs in to the directory, you need to set a value for the userPassword
attribute. The userPassword attribute is not a mandatory attriubute. However, if you create an entry
without a userPassword attribute, the entry cannot log in.

eDirectory does not currently support any server-side controls to use with adding entries.

See Also

ldap add (page 80), ldap add ext s (page 84), Idap _add s (page 87)

Standard LDAP Functions

83

Idap_add_ext_ s

Synchronously adds an entry to the directory using LDAP client or server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap add ext s (

LDAP *1d,
const char *dn,
LDAPMod **attrs,

LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry to add, for example: "o=novell", "ou=provo",
"cn=kim"

All components of the dn must exist except for the leaf component. The leaf component name
must be unique within the container.
attrs
(IN) Points to a NULL-terminated array of LDAPMod structures that contain the attributes and
values to add with the entry. All mandatory attributes must have values or the operation fails.
serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
add. Use NULL to specify no server controls.
clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with the
add. Use NULL to specify no client controls.
msgidp
(OUT) Points to the message ID of the request when the add request succeeds.

84 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x01 LDAP_OPERATIONS_ERROR

0x02 LDAP_PROTOCOL_ERROR

0x08 LDAP_STRONG_AUTH_REQUIRED
0x11 LDAP_UNDEFINED_TYPE

0x13 LDAP_CONSTRAINT_VIOLATION
0x14 LDAP_TYPE_OR_VALUE_EXISTS
0x15 LDAP_INVALID_SYNTAX

Ox0A LDAP_REFERRAL

0x0C LDAP_UNAVAILABLE_CRITICAL_EXTENSION
0x0D LDAP_CONFIDENTIALITY_REQUIRED
0x20 LDAP_NO_SUCH_OBJECT

0x22 LDAP_INVALID_DN_SYNTAX

0x32 LDAP_INSUFFICIENT_ACCESS

0x33 LDAP_BUSY

0x35 LDAP_UNWILLING_TO_PERFORM
0x36 LDAP_LOOP_DETECT

0x40 LDAP_NAMING_VIOLATION

0x41 LDAP_OBJECT_CLASS_VIOLATION
0x44 LDAP_ALREADY_EXISTS

0x50 LDAP_OTHER

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

Remarks

For a list of mandatory attributes for an entry see the LDAP server's schema. For eDirectory, see
NDK: Novell eDirectory Schema Reference.

If you are adding an entry that logs in to the directory, you need to set a value for the userPassword
attribute. The userPassword attribute is not a mandatory attriubute. However, if you create an entry
without a userPassword attribute, the entry cannot log in.

eDirectory does not currently support any server-side controls to use with adding entries.

Standard LDAP Functions

85

For sample code, see addentry.c and addentry1.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

See Also

ldap_add (page 80), Idap_add s (page 87), Idap_add_ext (page 82),

86 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_add_s

Synchronously adds an entry to the directory.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap add s (
LDAP *1d,
const char *dn,
LDAPMod **attrs);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry to add, for example: "o=novell", "ou=provo",
"cn=kim"

All components of the dn must exist except for the leaf component. The leaf component name
must be unique within the container.
attrs

(IN) Points to an array of LDAPMod structures that contain the attributes and values to add
with the entry. All mandatory attributes must have values or the operation fails.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

The ldap_add s is an older function. LDAP v3 clients should use the Idap add ext s function.

Standard LDAP Functions

87

For a list of mandatory attributes for an entry see the LDAP server's schema. For eDirectory, see
NDK: Novell eDirectory Schema Reference.

See Also

ldap_add (page 80), Idap_add ext (page 82), Idap_add _ext s (page 84), ldap _modify (page 182)

88 NDK: LDAP Libraries for C

Idap_bind

Asynchronously authenticates a specified entry to the directory. This function has been deprecated;
use the Idap_simple bind function.

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_bind (
LDAP *1d,
const char *dn,
const char *cred,
int method) ;

Parameters

Id

(IN) Points to the handle for the LDAP session which is returned by either the Idap open or
Idap_init function.

dn

(IN) Points to the distinguished name of the entry to use for authentication, for example:

nn

"o=novell", "ou=provo", "cn=kim"
cred

(IN) Points to the credentials to use for authentication

method
(IN) Specifies the authentication method. eDirectory supports the following methods:
+ LDAP _AUTH NONE (0x00)— no authentication
+ LDAP_AUTH_SIMPLE (0x80)—context specific + primitive

Return Values

>0 Message ID of operation

-1 Failure

Standard LDAP Functions

89

See Also

ldap_simple bind (page 279), Idap_unbind, Idap_unbind_s (page 287), Idap_unbind ext,
ldap_unbind ext_s (page 288)

90 NDK: LDAP Libraries for C

Idap_bind_digest_md5_start

Begins the DIGEST-MDS5 SASL bind process.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap bind digest md5 start (

LDAP *1d,

LDAP DIGEST MD5 CONTEXT *digestMD5ctx
)7

Parameters

1d
(IN) the handle for the LDAP session.

digestMD5ctx

(IN) A pointer to an LDAP_DIGEST MDS5 CONTEXT variable that will be initialized with a
new DIGEST-MDS5 login context. This context must be used in a sebsequent call to
ldap bind digest md5 finish (page 93).

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

The LDAP_OPT NETWORK TIMEOUT option (set by calling Idap_set option (page 275))
enables you to set a timeout for the initial connection to a server. If no timeout is set, timeout
depends upon the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by spaces in a bind call,
then use a timeout to determine how long your application will wait for an initial response before
attempting a connection to the next host in the list.

Standard LDAP Functions

91

Passing NULL for the 1d parameter of 1dap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap init (page 177) or Idapssl_init (page 306).
To clear the timeout pass NULL for the invalue parameter of ldap _set_option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

See Also

ldap get digest mdS realms (page 162), ldap bind digest mdS _finish (page 93)

92 NDK: LDAP Libraries for C

Idap_bind_digest_md5_finish

Finishes a DIGEST-MD)S bind started by a call to Idap bind digest md5_start (page 91). It must
also be called if the application must abort the bind sequence after calling
ldap bind digest md5_start.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap bind digest md5 finish (
LDAP DIGEST MD5 CONTEXT *digestMD5ctx,

char *authlID,
char *password,
int passwordLen,
int realmIndex,
int abortFlag

)

Parameters

digestMD5ctx

(IN) The DIGEST-MDS5 context created by a call to ldap_bind digest md5 begin_s. The
function will set the context pointer to NULL.

authID

(IN) A NULL-terminated UTF-8 encode string containing the properly formated authorization
identity for the user to be authenticated.

password

(IN) A NULL-terminated UTF-8 encode string containing the user’s password.

passwordLen

(IN) The length in bytes of the password. This is required to allow passwords that have
embedded NULL bytes. If the password is known to be a NULL-terminated string, the
passwordLen value can be set to minus one (-1) or the length of the string.

realmIndex

(IN) This is the index of the realm selected by the client application.

abortFlag
(IN) Must be equal to DIGEST MD5_ABORT or DIGEST MDS5_FINISH.

Standard LDAP Functions

93

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

If abortFlag is equal to DIGEST MDS5_FINISH, the function attempts to complete the bind
sequence with the server and then frees any memory allocated during the bind process. If abortFlag
is equal to DIGEST _MDS5_ABORT, the function sends a SASL bind request to the server with a
zero length string for the mechanism and no credentials. This signals the server that the bind
sequence was aborted by the client. Any allocated memory is also freed.

See Also

ldap bind digest md5 _start (page 91)

94 NDK: LDAP Libraries for C

Idap_bind_nmas_s

LDAP Version: v2 or higher
Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap nmas bind s (
LDAP *1d,
LDAP CONST char *dn,
LDAP CONST char *password,
LDAP CONST char *regSequence,
LDAP_CONST char *reqClearance

Parameters

1d
(IN) the handle for the LDAP session.

dn
(IN) The dn of the user to be authenticated.

password

(IN) The users password if the requested sequence allows for a password.

reqSequence
(IN) The NMAS login sequence to be used. May be NULL.

reqClearance
(IN) The clearance requested by the client. May be NULL.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

Standard LDAP Functions

95

Remarks

If abortFlag is equal to DIGEST MDS5_FINISH, the function attempts to complete the bind
sequence with the server and then frees any memory allocated during the bind process. If abortFlag
is equal to DIGEST _MDS5_ABORT, the function sends a SASL bind request to the server with a
zero length string for the mechanism and no credentials. This signals the server that the bind
sequence was aborted by the client. Any allocated memory is also freed.

The LDAP_OPT NETWORK TIMEOUT option (by calling ldap set option (page 275) enables
you to set a timeout for the initial connection to a server. If no timeout is set, timeout depends upon
the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by commas in a bind
call, then use a timeout to determine how long your application will wait for an initial response
before attempting a connection to the next host in the list.

Passing NULL for the 1d parameter of Idap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap init (page 177) or Idapssl_init (page 306).
To clear the timeout pass NULL for the invalue parameter of ldap set_option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

See Also

ldap_nmas_err2string (page 209), Idap nmas_get errcode (page 211)

96 NDK: LDAP Libraries for C

Idap _bind_s

Synchronously authenticates a specified entry to the directory. This function has been deprecated;
use the ldap simple bind s function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap bind s (
LDAP *1d,
const char *dn,
const char *cred,

int method) ;
Parameters
1d
(IN) Points to the handle for the LDAP session which is returned by either the Idap open or
Idap_init function.
dn
(IN) Points to the distinguished name of the entry to use for authentication, for example:
"o=novell", "ou=provo", "cn=kim"
cred
(IN) Points to the credentials to use for authentication
method

(IN) Specifies the authentication method. eDirectory supports the following methods:
+ LDAP _AUTH NONE (0x00)— no authentication
+ LDAP_AUTH_SIMPLE (0x80)—context specific + primitive

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

Standard LDAP Functions

97

0x56 LDAP_AUTH_UNKNOWN

0x59 LDAP_PARAM_ERROR
Ox5A LDAP_NO_MEMORY
0x5C LDAP_NOT_SUPPORTED
See Also

ldap _simple bind (page 279), Idap_unbind, ldap unbind_s (page 287), ldap unbind ext,
ldap unbind ext s (page 288)

98 NDK: LDAP Libraries for C

Idap_cancel ext

Cancels an asynchronous LDAP operation already in progress using LDAP client or server controls.
The LDAP Cancel operation should be used instead of the LDAP abandon operation when the client
needs to know the results.

LDAP Version: v3
Library: *ldapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>int ldap cancel ext (
LDAP *1d,

int msgid,

LDAPControl **serverctrls,

LDAPControl **clientctrls,

Int *msgidp) ;
Parameters
1d

(IN) Points to the handle for the LDAP session.
msgid
(IN) Specifies the message ID of the asynchronous LDAP operation to cancel.

serverctrls

(IN) Points to a list of LDAP server controls to use with the abandon operation. Use NULL to
specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
abandon operation. Use NULL to specify no client controls.

msgidp
(OUT) Points to the message ID of the request if the search request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x51 LDAP_SERVER_DOWN

0x53 LDAP_ENCODING_ERROR

Standard LDAP Functions

99

0x59 LDAP_PARAM_ERROR

0x5A LDAP_NO_MEMORY

0X76 LDAP_CANCELED

0X77 LDAP_CANCEL_NO_SUCH_OPERATION
0X78 LDAP_CANCEL_TOO_LATE

0X79 LDAP_CANCEL_CANNOT_CANCEL
Remarks

The msgid parameter must specify a message ID returned by an outstanding asynchronous LDAP
operation, such as ldap_search or Idap modify.

The ldap_cancel ext function checks to see if the results of the operation have already come in.

¢ Ifnot, it sends an LDAP cancel operation to the LDAP server.

¢ [f the results have already come in, the LDAP operation cannot be cancelled.

eDirectory currently does not support any controls to use with a cancel operation.

See Also

ldap_add ext s (page 84)

100 NDK: LDAP Libraries for C

Idap_cancel_ext_s

Synchronously Cancels an asynchronous LDAP operation already in progress using LDAP client or
server controls. The LDAP Cancel operation should be used instead of the LDAP abandon operation
when the client needs to know the result.

LDAP Version: v3
Library: *ldapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>int ldap cancel ext s (
LDAP *1d,

int msgid,

LDAPControl **serverctrls,

LDAPControl **clientctrls,

)

Parameters

1d
(IN) Points to the handle for the LDAP session.

msgid
(IN) Specifies the message ID of the asynchronous LDAP operation to cancel.

serverctrls

(IN) Points to a list of LDAP server controls to use with the abandon operation. Use NULL to
specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
abandon operation. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x51 LDAP_SERVER_DOWN

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

Standard LDAP Functions 101

0X76
OX77
0X78
0X79

LDAP_CANCELED
LDAP_CANCEL_NO_SUCH_OPERATION
LDAP_CANCEL_TOO_LATE
LDAP_CANCEL_CANNOT_CANCEL

Remarks

The msgid parameter must specify a message ID returned by an outstanding asynchronous LDAP
operation, such as ldap_search or Idap_modify.

The 1dap _cancel ext s function checks to see if the results of the operation have already come in.

+ Ifnot, it sends an LDAP cancel operation to the LDAP server.

¢ [fthe results have already come in, the LDAP operation cannot be cancelled.

eDirectory currently does not support any controls to use with a cancel operation.

See Also

ldap _cancel ext (page 99)

102 NDK: LDAP Libraries for C

Idap_compare

Asynchronously determines whether a specified entry contains a specified attribute value.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap compare (
LDAP *1d,
const char *dn,
const char *attr,
const char *value) ;

Parameters
1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry whose attribute is being compared.

attr

(IN) Points to the name of the attribute to compare.

value

(IN) Points to a string value of the attribute to compare.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

This function compares the specified value with the values in the entry's attribute. The results
specify whether a match is found.

The ldap_compare function is an older function. LDAP v3 clients should use the Idap_compare ext
function.

Standard LDAP Functions 103

The ldap_compare function can compare only attributes with string values. Use ldap _compare ext
to compare binary values.

To obtain the results of the operation, call the Idap result function with the returned message ID.

Compare operations are faster than search operations. Whenever possible in your application, use a
compare rather than a search operation.

See Also

ldap _compare ext (page 105)

104 NDK: LDAP Libraries for C

Idap_compare_ext

Asynchronously determines whether a specified entry contains a specified attribute value. LDAP

client or server controls can be used with the compare.

LDAP Version: v3
Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_ compare ext (
LDAP
const char
const char
const struct berval
LDAPControl
LDAPControl
int

Parameters

1d

(IN) Points to the handle for the LDAP session.

dn

*1d,

*dn,

*attr,
*bvalue,
**serverctrls,
**clientctrls,
*msgidp) ;

(IN) Points to the distinguished name of the entry whose attribute is being compared.

attr

(IN) Points to the name of the attribute to compare.

bvalue

(IN) Points to a berval structure that contains the attribute's value to compare with the entry's

attribute value.

serverctrls

(IN) Points to an array of LDAPControl structures that list the server controls to use with the

search. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the

search. Use NULL to specify no client controls.

Standard LDAP Functions 105

msgidp

(OUT) Points to the message ID of the request when the search request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

This function compares the specified value with the values in the entry's attribute. The results
specify whether a match is found.

The ldap_compare ext function can be used to compare any type of data. For string data, you can
use the ldap _compare function.

The data returned in msgidp is opaque to the caller. To obtain the results of the operation, call the
ldap_result function with the returned message ID.

Compare operations are faster than search operations. Whenever possible in your application, use a
compare rather than a search operation.

eDirectory does not currently support any server controls to use with compare operations.

See Also

ldap compare (page 103)

106 NDK: LDAP Libraries for C

Idap_compare _ext_s

Synchronously determines whether a specified entry contains a specified attribute value. LDAP
client or server controls can be used with the compare.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap compare ext s (

LDAP *1d,
const char *dn,
const char *attr,
const struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls);
Parameters
Id

(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry whose attribute is being compared.

attr

(IN) Points to the name of the attribute to compare.

bvalue
(IN) Points to berval structure that contains the attribute's value to compare with the entry's
attribute value.

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
search. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
search. Use NULL to specify no client controls.

Standard LDAP Functions 107

Return Values

0x05
0x06

Non-zero value other
than 0x05 or 0x06

LDAP_COMPARE_FALSE: the entry does not contain the attribute value.
LDAP_COMPARE_TRUE: the entry contains the attribute value

Failure. For a complete list, see “LDAP Return Codes”.

0x53 LDAP_ENCODING_ERROR
0x5A LDAP_NO_MEMORY
Remarks

This function compares the specified value with the values in the entry's attribute and returns

whether a match is found.

The ldap_compare ext_s function can be used to compare any type of data. For string data, you can

use ldap _compare_s.

Compare operations are faster than search operations. Whenever possible in your application, use a
compare rather than a search operation.

eDirectory does not currently support any server controls to use with compare operations.

For sample code, see cpattrs.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

See Also

ldap_compare_s (page 109)

108 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_compare_s

Synchronously determines whether a specified entry contains a specified attribute value.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap compare s (
LDAP *1d,
const char *dn,
const char *attr,
const char *value) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name of the entry whose attribute is being compared.

attr

(IN) Points to the name of the attribute to compare.

value

(IN) Points to a string value of the attribute to compare.

Return Values

0x05 LDAP_COMPARE_FALSE: the entry does not contain the attribute value.
0x06 LDAP_COMPARE_TRUE: the entry contains the attribute value
Non-zero value other Failure. For a complete list, see “LDAP Return Codes”.

than 0x05 or 0x06
0x53 LDAP_ENCODING_ERROR
0x5A LDAP_NO_MEMORY

Standard LDAP Functions 109

Remarks

The ldap_compare_s function takes the attribute and its value and compares them to those found in
the specified entry (dn).

The Idap_compare s function is an older function. LDAP v3 clients should use the
ldap_compare_ext s function.

This function can compare only attributes with string values. Use Idap _compare ext s to compare
binary values.

Compare operations are faster than search operations. Whenever possible in your application, use a
compare rather than a search operation.

See Also

ldap _compare ext (page 105)

110 NDK: LDAP Libraries for C

Idap_control_free

Frees an LDAPControl structure.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap control free (
LDAPControl *ctrl);

Parameters

ctrl

(IN) Points to the control structure to free.

Remarks

If you have created a control, you should call this function to free the structure when you are
finished with the control.

See Also

ldap _controls_free (page 112)

Standard LDAP Functions 111

Idap_controls_free

Frees an array of LDAPControl structures.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

void ldap controls free (
LDAPControl **ctrls);

Parameters

ctrls

(IN) Points to an array of control structures.

Remarks

You should call this function to free any arrays of controls that you create or that are returned to you
by other functions such as Idap parse result.

See Also

ldap control free (page 111)

112 NDK: LDAP Libraries for C

Idap_count_entries

Returns the number of LDAPMessage structures that are of the type
LDAP _RES SEARCH_ENTRY.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap_count entries (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result message chain returned by the Idap_result function or a synchronous
search function.

Return Values

>0 Number of entries
0 No more entries
-1 Failure
Remarks

The ldap_count_entries function can be used to count the number of message structures that remain
in a chain. Messages are removed from the chain by calling one of the following functions:

¢ ldap first message

*

ldap_next message

*

Idap_first entry

*

Idap next entry

Standard LDAP Functions 113

This function counts from the current position of the pointer to the end of the chain.

¢ Ifyou pass a pointer that points to the first message structure in the chain, it counts all the
entries in the chain.

¢ [fyou pass a pointer that points to a structure in the middle of the chain, it counts the entries
from that point to the end of the chain.

See Also

Idap_first entry (page 154), Idap next entry (page 205), Idap_search (page 260), ldap search_ext
(page 262), Idap_search_ext_s (page 265), Idap_search_s (page 268), Idap_search_st (page 270)

114 NDK: LDAP Libraries for C

Idap_count_messages

Returns the number of LDAPMessage structures of any type in an LDAP message chain.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap count messages (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result message chain returned by the Idap_result function or a synchronous
search function.

Return Values

>0 Number of messages in the chain
0 No more messages

-1 Failure

Remarks

The ldap_count_messages function can be used to count the number of message structures that
remain in a chain. The following functions are used to iterate through the chain:

¢ ldap first message
¢ ldap next message
¢ ldap first reference

¢ ldap next reference

Standard LDAP Functions 115

This function counts from the current position of the pointer to the end of the chain.

¢ Ifyou pass a pointer that points to the first message structure in the chain, it counts all the
messages in the chain.

+ [fyou pass a pointer that points to a structure in the middle of the chain, it counts the messages
from that point to the end of the chain.

See Also
ldap_first message (page 156), Ildap next message (page 207), Idap_search (page 260),

ldap search ext (page 262), Idap _search_ext s (page 265), Idap _search_s (page 268),
ldap search_st (page 270)

116 NDK: LDAP Libraries for C

Idap_count_references

Returns the number of LDAPMessage structures in an LDAP result message chain that are of type
LDAP _RES SEARCH REFERENCE.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap count references (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result chain returned by the Idap result function or a synchronous search
function.

Return Values

>0 Number of references
0 No more references
-1 Failure
Remarks

This function counts from the current position of the pointer to the end of the chain.

¢ Ifyou pass a pointer that points to the first message structure in the chain, it counts all the
references in the chain.

¢ Ifyou pass a pointer that points to a structure in the middle of the chain, it counts the references
from that point to the end of the chain.

Standard LDAP Functions 117

See Also
ldap_first reference (page 158), Idap next reference (page 208), ldap_search (page 260),

ldap _search_ext (page 262), Idap_search_ext s (page 265), Idap_search_s (page 268),
ldap_search_st (page 270)

118 NDK: LDAP Libraries for C

Idap_count_values

Returns the number of strings in the array.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap count values (

char **yvals) ;
Parameters
vals

(IN) Points to the array of values returned by the ldap get values or Idap get values_len
function.

Return Values

>0 Number of values
-1 Failure
Remarks

The ldap_count_values function can be used for attributes that have character string values. If the
array contains berval structures (binary data), use the ldap _count values_len function.

See Also

ldap _get values len (page 172), ldap _get values (page 170), Idap_count values_len (page 120),
ldap _value free (page 301), Idap_value free len (page 302)

Standard LDAP Functions 119

Idap_count_values_len

Returns the number of berval structures in the array.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap count values len (
struct berval **vals) ;

Parameters

vals

(IN) Points to the array of values returned by the ldap get values or Idap get values_len
function.

Return Values

>0 Number of values
-1 Failure
Remarks

The ldap_count_values_len function can be used to count the number of values for attributes that
have binary data. Use ldap_count_values to count string attribute values.

The memory for the vals parameter is dynamically allocated. When you are done with the array, free
the memory by calling the Idap_value free len function.

See Also

ldap get values_len (page 172), Idap_get values (page 170), ldap_count values (page 119),
ldap value free (page 301), Idap_value free len (page 302)

120 NDK: LDAP Libraries for C

Idap_create_geteffective control

Creates and encodes a get effective privilege control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax
#include <ldap.h>ldap create geteffective control (
LDAP *1d,
LDAPGetprvInfo **getprvinfo,
int efPrvvalue,
int isCritical,

LDAPControl **ctrlp));

Parameter

1d
(IN) Points to the handle for the LDAP session obtained from a call to ldap_init().

Getprvinfo
(IN) Points to a null-terminated array of pointers to LDAPGetprvInfo structures, containing a
description of each of the EffectivePrivilege value selection type.

efPrvvalue
(IN) Specifies a bool value indicating includeAllLegal Attributes value is seclected. -1 indicates
that the includeAllLegalAttributes value is not selected.

isCritical
(IN) Indicates the criticality of the control to the operation. 0 indicates that the control is not
critical to the operation and a non-zero values indicates that the control is critical to the
operation.

ctrlp

(OUT) Returns a pointer to the created LDAPControl. This control is free from calling the
Idap_control_free() after returning the pointer.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”

Standard LDAP Functions 121

Remarks

The ldap create geteffective control creates a sort control, that can be used as the server control
parameter in the Idap search ext and the ldap search ext s functions.

122 NDK: LDAP Libraries for C

Idap_create persistentsearch_control

Creates and encodes a persistent search control.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.5 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap create persistentsearch control (

LDAP *1d,

int changeTypes,
int changesOnly,
int returnkEchgCtls,
char isCritical,

LDAPControl **ctrlp);

Parameters

1d
(IN) Points to the handle of the LDAP session.

changeTypes

(IN) an integer whose value is the bit-wise OR of the flag values corresponding to the changes
types for which a the client wishes to be notified. Valid flags are as follows:

LDAP_CHANGETYPE_ADD specifies that you want to be notified when
entries are added to the directory

LDAP_CHANGETYPE_DELETE specifies that you want to be notified when
entries are deleted from the directory

LDAP_CHANGETYPE_MODIFY specifies that you want to be notified when
entries are modified.

LDAP_CHANGETYPE_MODDN specifies that you want to be notified when
entries are renamed.

LDAP_CHANGETYPE_ANY specifies that you want to be notified when any
of the above changes are made.

Standard LDAP Functions 123

changesOnly

(IN) If non-zero, the initial search is only used to establish a result set on the server. No results
are returned from this initial search. As changes are subsequently made to entries in the result
set, the server returns the changed entries to the client. If zero, both the results of the initial
search and entries that are subsequently changed are returned.

returnEntryChangeCtrl
(IN) If non-zero, an entry change notification control is included with each entry. If 0, entry
change notification controls are not included with the entries returned from the server.
isCritical

(IN) Specifies whether or not the persistent search control is critical to the search operation. If
non-zero, the control is critical to the search operation. If the server does not support persistent
searches, the server will return the error LDAP_UNAVAILABLE CRITICAL EXTENSION.

If 0, the control is not critical to the search operation. Even if the server does not support
persistent searches, the search operation is still performed.]
ctrlp

(OUT) Points to a pointer for the LDAPControl structure which this function creates and which
can be used in the search operation. When you are done with this control, its memory should be
freed by calling the 1dap_control free function.

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

This API creates an LDAP persistent search control using the supplied parameters. The control can
then be used in a call to Idap_search_ext to request that the server perform a persistent search. A
persistent search allows the client to be notified when changes are made to entries that satisfy the
specified search filter. When a persistent search is performed, the connection to the server remains
open until the cient abandons the search or unbinds from the server. The timeout parameters to the
search are ignored.

For example code, see searchPersist.c (http://developer.novell.com/ndk/doc/samplecode/
cldap sample/index.htm).

See Also

ldap_search_ext (page 262), Idap _parse_entrychange control (page 214)

124 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap _create_reference control

Creates and ecodes a reference control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax
#include <ldap.h>ldap create reference control (
LDAP *1d,
int isCritical,
LDAPControl **ctrlp)
Parameters
Id
(IN) Points to the handle for the LDAP session obtained from a call to ldap_init().
isCritical
(IN) Indicates the criticality of the control to the operation. 0 indicates that the control is not
critical to the operation and a non-zero values indicates that the control is critical to the
operation.
ctrlp

(OUT) Returns a pointer to the created LDAPControl. This control is free from calling the
Idap control_free() after returning the pointer.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”
Remarks

ldap_create reference_control creates a continuity reference control, that can be used as the server
control parameter in the ldap_search ext and the Idap _search_ext s functions.

Standard LDAP Functions 125

Idap_create_sort_control

Creates and encodes a server-side sort control.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap create sort control (

LDAP *1d,
LDAPSortKey **keyList,
int isCritical,

LDAPControl **ctrlp);

Parameters

1d
(IN) Points to the handle of the LDAP session.

keyList
(IN) Points to a NULL-terminated array of pointers to LDAPSortKey structures which contain
the attributes to match and the rules to use for matching.
isCritical
(IN) Specifies whether the control is required for the search operation:
+ Non-zero specifies that the control is required.

* Zero specifies that the search operation can be performed without the control.

ctrlp

(OUT) Points to a pointer for the LDAPControl structure which this function creates and which
can be used in the search operation. When you are done with this control, its memory should be
freed by calling the 1dap_control free function.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”.

126 NDK: LDAP Libraries for C

Remarks

The ldap_create_sort_control function creates a sort control that you can use as the server control
parameter in the Idap search ext and the ldap search ext s functions.

For example code, see sortentl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap parse sort control (page 229), Idap control free (page 111), Idap _controls_free (page 112)

Standard LDAP Functions 127

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_create_sort_keylist

Creates an a array of pointers to LDAPSortKey structures.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap create sort keylist (

LDAPSortKey ***sortKeyList,
char *keyString) ;

Parameters

sortKeyList

(OUT) Points to a NULL-terminated array of pointers to LDAPSortKey structures which
contain the attributes to sort on and the rules to use for ordering.

keyString

(IN) Points to a string representation of one or more sort keys, separated by spaces.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
Remarks

A key string uses the following format:
[-]lattribute[:ordering rule]

The optional - indicates reverse sort order.

The attribute specifies an attribute in the LDAP server's schema.

The optional ordering rule is an OID (dotted string format) specifying the matching rule to use for
sorting.

128 NDK: LDAP Libraries for C

IMPORTANT: eDirectory currently supports only a single sort key, no ordering rules, and only
forward sorting.

If the attribute corresponds to an existing index on the eDirectory server, performance is extremely
good even with very large result sets. NDS 8 and NDS eDirectory have indexes for the following
attributes:

sn (NDS name: Surname)

givenName (NDS name: Given Name)
cn (NDS name: CN)

uid (NDS name: uniquelD)

If you create a sort key for an attribute that does not have a defined index, one of the following
happens:

¢ [f the control is specified as critical, the function returns “No such attribute”.

¢ [f the control is not marked critical, the control is ignored and the results are returned unsorted.

The ldap_create_sort_keylist function allocates memory for the sortKeyList array and this memory
should be freed by calling the 1dap free sort keylist function.

For example code, see sortentl.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

See Also

ldap _create_sort_control (page 126), ldap free sort keylist (page 159)

Standard LDAP Functions 129

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_create sstatus_control

Creates and encodes a search status control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax
#include <ldap.h>ldap create sstatus control (
LDAP *1d,
LDAPSstatCtrl “*sstatctrl,
int isCritical,
LDAPControl **ctrlp)
Parameters
1d
(IN) Points to the handle for the LDAP session obtained from a call to ldap_init().
sstatctrl
(IN) The address of an structure whose contents are used to construct the value of the control
that is created.
isCritical
(IN) Indicates the criticality of the control to the operation. 0 indicates that the control is not
critical to the operation and a non-zero values indicates that the control is critical to the
operation.
ctrlp

(OUT) Returns a pointer to the created LDAPControl. This control is free from calling the
Idap_control_free() after returning the pointer.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”
Remarks

The ldap_create_geteffective _control creates a search status control, that can be used as the server
control parameter in the ldap_search ext and the Idap _search_ext s functions.

130 NDK: LDAP Libraries for C

Idap_create viv_control

Creates and encodes a server-side virtual list view control to use with a search operation.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap create vlv control (
LDAP *1d,
LDAPVLVInfo *v1lvinfop,
LDAPControl **ctrlp);

Parameters

1d
(IN) Points to the handle of the LDAP session.

vlvinfop
(IN) Points to an LDAPVLVInfo structure that contains the information required to create a
virtual list view control.

ctrlp

(OUT) Points to the address of the LDAPControl structure that contains the virtual list view
control created by this function. When this control is no longer in use, the memory should be
freed by calling the 1dap_control free function.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
Remarks

The virtual list view control must be used with the server-side sort control. The virtual list view
control has been assigned the following OID:

2.16.840.1.113730.3.4.9

Standard LDAP Functions 131

For example code, see vlventl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap parse vlv_control (page 232), Idap_search_ext (page 262), Idap_search_ext s (page 265),
ldap_create_sort_control (page 126), ldap _control free (page 111), ldap controls_free (page 112)

LDAPVLVInfo (page 501), LDAPControl (page 487)

132 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_delete

Asynchronously deletes the specified entry.
LDAP Version: v2 or higher
Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap delete (

LDAP *1d,
const char *dn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the entry to delete.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

The entry specified for the delete must be a leaf entry. If the entry has children, the delete will fail.

LDAP does not support the deletion of a subtree in a single operation.

To obtain the results of the operation, call the Idap_result function with the returned message ID.

If ldap_delete returns -1, check the LDAP OPT RESULT CODE option in the LDAP handle for

the error code.

See Also

ldap_delete_s (page 138), Idap_delete ext (page 134), Idap_delete_ext s (page 136)

Standard LDAP Functions 133

Idap_delete_ext

Asynchronously deletes the specified entry using LDAP client or server controls.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap delete ext (
LDAP *1d,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn
(IN) Points to the distinguished name of the entry to delete.

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with this
delete. Use NULL to specify no server controls.

clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with this
delete. Use NULL to specify no client controls.

msgidp

(OUT) Points to the integer value to set as the message ID of the request. When the delete
request succeeds, use Idap_result with this value to retrieve the response.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

134 NDK: LDAP Libraries for C

0x53 LDAP_ENCODING_ERROR
O0x5A LDAP_NO_MEMORY

Remarks

The entry specified for the delete must be a leaf entry. If the entry has children, the delete will fail.
LDAP does not support the deletion of a subtree in a single operation.

To obtain the results of the operation, call the ldap_result function with the returned message ID.

eDirectory does not currently support any server-side controls for delete operations.

See Also

ldap_delete (page 133), Idap_delete_ext s (page 136), Idap_delete s (page 138)

Standard LDAP Functions 135

Idap_delete_ext_ s

Synchronously deletes the specified entry using LDAP client or server controls.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap delete ext s (
LDAP *1d,
const char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the entry to delete.

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with this
delete. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with this
delete. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

136 NDK: LDAP Libraries for C

Remarks

The entry specified for the delete must be a leaf entry. If the entry has children, the delete will fail.
LDAP does not support the deletion of a subtree in a single operation.

eDirectory does not currently support any server-side controls for delete operations.

For sample code, see delentry.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap_delete (page 133), Idap_delete s (page 138), Idap delete ext (page 134)

Standard LDAP Functions 137

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_delete_s

Synchronously deletes the specified entry.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap delete s (

LDAP *1d,
const char *dn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the entry to delete.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

O0x5A LDAP_NO_MEMORY

Remarks

The entry specified for the delete must be a leaf entry. If the entry has children, the delete will fail.
LDAP does not support the deletion of a subtree in a single operation.

See Also

ldap delete (page 133), Idap_delete_ext_s (page 136), ldap_delete_ext (page 134)

138 NDK: LDAP Libraries for C

Idap_destroy

Destroys the session handle.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap destroy (

LDAP *1d
)

Parameters

1d
(IN) Points to the LDAP session handle.

Return Values

0x00 LDAP_SUCCESS
0x59 LDAP_PARAM_ERROR
Remarks

This function destroys the duplicated session handle and should be used in conjunction with
ldap_dup.

Standard LDAP Functions 139

Idap_dn2ufn

Converts a distinguished name into the user friendly format.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char *ldap dnZufn (
const char *dn) ;

Parameters

dn
(IN) Points to the distinguished name to be converted.

Return Values

>0 Pointer to the converted name
NULL Failure
Remarks

The user friendly format is defined in RFC 1781. The format strips off the types and places a comma
between the components of the name. Components which have commas in their names are placed in
quotation marks.

The memory for the user friendly format is newly allocated and should be freed with a call to the
ldap_memfree function.

See Also

ldap get dn (page 161), Idap_explode dn (page 144), ldap_explode rdn (page 146)

140 NDK: LDAP Libraries for C

Idap_dup

Returns a duplicate of a session handle.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
LDAP * ldap dup (

LDAP *1d
)

Parameters

1d
(IN) Points to the LDAP session handle.

Return Values

Address of the duplicate Success
session handle

Null Failure

Standard LDAP Functions 141

Idap_err2string

Converts a numeric LDAP error code into a character string.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char *ldap err2string (
int err);

Parameters

err
(IN) Specifies an LDAP error code returned by an LDAP function.

Return Values

>0 Pointer to a zero-terminated character string.

Remarks

The ldap_err2string function converts LDAP error codes returned by the following functions:

¢ ldap parse_result
¢ ldap parse sasl bind result
¢ ldap parse extended result

¢ synchronous LDAP operation functions
The LDAP error code is converted to a zero-terminated character string which describes the error.

The return value points to a string contained in static data. Be aware of the following:

*

It should be used or copied before another call to Idap_err2string is made.

*

The pointer should not be used to modify the original string.

*

The string should not be freed by the application program.
The returned string is UTF-8 encoded if the API succeeds.

*

If the API succeeds, errno is set to 0. Else, the returned string will be in local codepage.

142 NDK: LDAP Libraries for C

If the retuned string is UTF-8 encoded then it has to be converted into the local codepage before you
can print it. Otherwise, the returned pointer can be used directly in a printf statement as displayed in
the following example:

err=ldap search(...);if (err) { char *s; s= ldap_err2string(err); if
(errno==0) // returned string is utf8 encoded { //convert to local
codepage and print it } else // returned string is not utf8 encoded, it
is in local codepage printf ("Search error: %$s\n",s); }

For information on converting utf8 to local code page, refer to the utf8bind.c sample code.

NOTE: If the locale is a single byte charset (for example, English), you do not need to convert from
UTF-8 to local charset, since UTF-8 charset is the same as the local charset for a single byte charset.

See Also

ldap parse result (page 224), Idap_parse_extended result (page 216), Idap_parse sasl bind result
(page 227)

Standard LDAP Functions 143

Idap_explode _dn

Breaks a distinguished name into its components.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char **ldap explode dn (
const char *dn,
int notypes) ;

Parameters

dn
(IN) Points to the distinguished name to explode.

notypes
(IN) Specifies whether the name should include type information:
+ [f zero, type information is included, for example "cn=Kim".

+ [fnon-zero, type information is stripped, for example "cn=Kim" becomes "Kim".

Return Values

>0 Pointer to a character array of components
NULL Failure
Remarks

The ldap_explode dn function takes a dn returned by Idap get dn and returns a NULL-terminated
character array of the components in the name. The components are returned in the order they
appear in the dn and are with or without types as indicated by the notypes parameter.

For example, if the dn is "cn=kim,ou=sales,o=myorg", the function returns the following array:

{"cn=kim", "ou=sales", "o=myorg", NULL}.

When the array is no longer in use, free the memory by calling the 1dap_value free function.

144 NDK: LDAP Libraries for C

See Also

ldap_get dn (page 161), Idap_explode rdn (page 146), Idap_dn2ufn (page 140)

Standard LDAP Functions 145

Idap_explode rdn

Breaks a relative distinguished name into its components.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char **1ldap explode rdn (
const char *rdn,
int notypes) ;

Parameters

rdn

(IN) Points to the relative distinguished name of the entry.

notypes
(IN) Specifies whether the name should include type information:
¢ If zero, type information is included, for example "cn=Kim".

+ Ifnon-zero, type information is stripped, for example "cn=Kim" becomes "Kim".

Return Values

>0 Pointer to a character array of components
NULL Failure
Remarks

The Idap_explode rdn returns a NULL-terminated character array with or without types as indicated
by the notypes parameter. The components are returned in the order they appear in the rdn.

For example, if the rdn is "ou=sales+cn=kim", tThe function returns the following array: {
"ou=sales", "cn=kim", NULL}.

When the array is no longer in use, free the memory by calling the 1dap_value_free function.

146 NDK: LDAP Libraries for C

See Also

ldap_get _dn (page 161), Idap_explode dn (page 144), Idap_dn2ufn (page 140)

Standard LDAP Functions 147

Idap_extended_operation

Asynchronously passes extended LDAP operations to the LDAP server.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap extended operation (

LDAP *1d,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
requestoid
(IN) Points to the dotted-OID text string identifying the extended operation to perform.
requestdata
(IN) Points to the data required for the operation. If NULL, no data is sent to the server.
serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with this
extended operation. Use NULL to specify no server controls.
clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with this
extended operation. Use NULL to specify no client controls.
msgidp

(OUT) Points to the integer value to set as the message ID of the request. When the extended
operation succeeds, the results are identified by this value.

148 NDK: LDAP Libraries for C

Return Values

0 Success
Non-zero Failure
Remarks

The data returned in the msgidp parameter is opaque to the caller. You must use the ldap_result and
ldap parse extended result functions to obtain the result, the OID, and the data.

The LDAP server must support the operation; otherwise an LDAP NOT SUPPORTED error is
returned.

See Also

ldap_extended operation_s (page 150)

Standard LDAP Functions 149

Idap_extended_ operation_s

Synchronously passes extended LDAP operations to the LDAP server.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap extended operation s (

LDAP *1d,
const char *requestoid,
const struct berval *requestdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap) ;
Parameters
1d

(IN) Points to the handle for the LDAP session.

requestoid

(IN) Points to the dotted-OID text string identifying the operation to perform.

requestdata

(IN) Points to the data required for the operation. If NULL, no data is sent to the server.

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with this
extended operation. Use NULL to specify no server controls.

clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with this
extended operation. Use NULL to specify no client controls.

retoidp

(OUT) Points to a dotted-OID text string returned by the LDAP server. A NULL values means
an OID is not returned. The memory used by the string should be freed with the ldap_memfree
function.

150 NDK: LDAP Libraries for C

retdatap

(OUT) Points to a pointer to a berval structure that contains the returned data. If no data is
returned, the server set this to NULL. The memory used by this structure should be freed with
the ber_bvfree function.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

See Also

ldap extended operation (page 148)

Standard LDAP Functions 151

Idap_first_attribute

Returns the name of the first attribute in an entry.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char *ldap first attribute (
LDAP *1d,
LDAPMessage *entry,
BerElement **ptr);

Parameters

1d
(IN) Points to the handle for the LDAP session.

entry

(IN) Points to the entry whose attributes are being read.

ptr

(OUT) Returns a pointer to a BerElement allocated by the library. It is used internally to track
the current position in the entry. This returned value is passed in subsequent calls to the
Idap_next_attribute function. It should be freed by the application with a call to the ber_free
(ptr, 0) function.

Return Values

NULL No more attributes or failure
>0 Pointer to the name of the first attribute in an entry
Remarks

The ldap_first_attribute function returns a pointer to the first attribute of an entry returned by either
the Idap_first entry or the ldap next entry function.

If NULL is returned and the ptr parameter is not NULL, check the LDAP OPT RESULT CODE
option in the LDAP handle for the error code.

152 NDK: LDAP Libraries for C

If NULL is returned and the ptr parameter is not NULL, all attributes have been retrieved.

The pointer to the name of the first attribute should be passed to the Idap get values function (or
others of its type) to retrieve the attribute's values. When you are done with the name pointer, you
must free it by calling the ldap_memfree function.

The ptr parameter should be used in subsequent calls to the ldap_next_attribute function to retrieve
other attributes of the entry. When you are done with the BerElement structure and its value is non-
NULL, you must free it by calling the ber_free function with the second parameter set to 0. If the ptr
parameter is set to NULL, then the 1dap_first_attribute function frees the memory.

See Also

ldap _next attribute (page 203), Idap get values (page 170)

Standard LDAP Functions 153

Idap_first_entry

Returns a pointer to the first entry of message type, LDAP_RES SEARCH_ENTRY, from a search
result chain.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
LDAPMessage *ldap first entry (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result chain returned by the Idap result function or a synchronous search
function.

Return Values

NULL No more entries in the chain or failure
>0 Pointer to the next entry in the chain
Remarks

The Idap_first entry function parses the results received from the Idap_result, the ldap search_s, the
ldap_search_ext s, or the Idap search_st functions.

If the 1dap_first entry function encounters an error, the function returns NULL and sets the
LDAP OPT RESULT CODE option in the LDAP session handle.

Use the Idap_get dn, 1dap_first_attribute, Idap _get values functions to retrieve information about
the entry.

Use the value returned by the ldap_first_entry function as the entry parameter for the
Idap_next_entry function to retrieve the next entry.

154 NDK: LDAP Libraries for C

See Also
ldap_next entry (page 205), Idap_count entries (page 113), Idap_search (page 260),

ldap _search_ext (page 262), Idap_search_ext s (page 265), Idap_search_s (page 268),
ldap_search_st (page 270)

Standard LDAP Functions 155

Idap_first_message

Returns a pointer to the first message type, LDAP RES SEARCH_ENTRY,
LDAP RES SEARCH RESULT, or LDAP RES SEARCH REFERENCE in a result chain.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
LDAPMessage *ldap first message (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result chain returned by the Idap result function or a synchronous search
function.

Return Values

NULL No more messages or failure
>0 Pointer to a message
Remarks

If ldap_first message encounters an error, the function returns NULL and sets the
LDAP_OPT _RESULT_CODE option in the LDAP session handle.

Use the Idap_count messages function to determine the number of messages in the chain. Use the
ldap_next message function to retrieve subsequent messages.

156 NDK: LDAP Libraries for C

See Also
ldap _next message (page 207), ldap_count_messages (page 115), ldap_search (page 260),

ldap _search_ext (page 262), Idap_search_ext s (page 265), Idap_search_s (page 268),
ldap_search_st (page 270)

Standard LDAP Functions 157

Idap_first_reference

Returns a pointer to the first reference of message type, LDAP_RES SEARCH REFERENCE, in a
search result chain.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
LDAPMessage *ldap first reference (

LDAP *1d,
LDAPMessage *res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

res

(IN) Points to the result chain returned by the Idap result function or a synchronous search
function.

Return Values

NULL No more references in the chain or failure
>0 Pointer to the next reference in the chain.
Remarks

If the 1dap_first reference function encounters an error, the function returns NULL and sets the
LDAP_OPT _RESULT_CODE option in the LDAP session handle.

See Also

ldap _next reference (page 208), Idap_count references (page 117), Idap parse reference
(page 220), Idap_search (page 260), ldap _search_ext (page 262), Idap_search_ext_s (page 265),
ldap search_s (page 268), Idap_search_st (page 270)

158 NDK: LDAP Libraries for C

Idap_free_sort_keylist

Frees the memory allocated by the ldap create_sort_keylist function.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap free sort keylist (
LDAPSortKey **sortKeyList) ;

Parameters

sortKeyList
(IN) Points to an array of pointers to LDAPSortKey structures that you want to free.

Remarks
The Idap_free sort keylist function frees the memory used by the LDAPSortKey structures, the
memory referenced by the structures, and the array of pointers to the structures. The

ldap_free_sort keylist function should be called only if the memory was allocated by the
Idap_create sort_keylist function.

See Also

ldap _create_sort_keylist (page 128)

Standard LDAP Functions 159

Idap_free _urldesc

Frees the memory allocated by the ldap url parse function.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap free urldesc (
const char *1ludp) ;

Parameters

ludp
(IN) Points to the LDAPURLDesc structure that you want to free.

See Also

ldap url parse (page 291)

160 NDK: LDAP Libraries for C

Idap_get_dn

Returns the distinguished name of an entry from a search result chain.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
char *ldap get dn (

LDAP *1d,
LDAPMessage *entry) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

entry

(IN) Points to the entry returned by the Idap_first entry or the ldap _next entry function.

Return Values

>0 Pointer to the distinguished name of the entry
NULL Failure to parse the name
Remarks

The Idap _get dn function takes an entry returned by either the Idap first entry or ldap next entry
function and returns a copy of the entry's dn. It returns a pointer to this newly allocated memory.
When you are finished with the name, free the memory with a call to the ldap_memfree function.

The distinguished name is returned in the UTF-8 string format as described in RFC 2253.

See Also

ldap explode dn (page 144), Idap_explode rdn (page 146), Idap dn2ufn (page 140)

Standard LDAP Functions 161

Idap_get_digest_ md5_realms

Allows the application to retrieve the realm values returned by the server in the digest-challenge
from the DIGEST-MDS context created by a call to Idap_bind_digest md5_start (page 91).

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap get digest md5 realms (
LDAP DIGEST MD5 CONTEXT *digestMD5ctx,
char*** *realms

)i

Parameters

digestMDS5ctx
(IN) The DIGEST-MDS5 context created by a call to ldap_bind digest md5 begin_s.

realms

(IN) A pointer to an array of char pointers. This argument will be set to point to an array of char
pointers that point to the realm values. The end of the array is indicated by a NULL element
value.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

This function allocates memory for the realms array. This memory is freed by calling

Idap bind digest md5 finish. The application should NOT attempt to free this memory directly.
Multiple calls to the ldap _get digest md5 realms function using the same digest-md5 context will
return a pointer to the same array allocated by the first call. This function must not be called after a
call to ldap bind_digest md5_finish for the same digest-md5 context.

162 NDK: LDAP Libraries for C

See Also

ldap bind digest mdS_start (page 91), Idap_bind_digest md5_finish (page 93)

Standard LDAP Functions 163

Idapssl_install_routines

Enables an existing, but new, LDAP session handle for SSL.
LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl install routines (
LDAP *1d) ;

Parameters

1d
(IN) Points to the handle of the LDAP session.

Return Values

0 Success
-1 Failure
Remarks

To use this function, you must call the following LDAP function in the specified order:

¢ Idapssl client init which initializes the SSL library
¢ ldap_init which creates the session handle

¢ ldapssl install_routines which enables the session handle for SSL

Behavior is unpredictable when other LDAP functions are called between the Idap _init function and
the ldapssl_install routines function.

The preferred method is to use the ldapssl_init function.

See Also

ldapssl_client init (page 303), Idapssl_init (page 306), ldap _init (page 177)

164 NDK: LDAP Libraries for C

Idap_get_entry_controls

Retrieves LDAP controls from an entry.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap get entry controls (
LDAP *1d,
LDAPMessage *entry,
LDAPControl ***serverctrlsp) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

entry

(IN) Points to the entry, returned by the Idap_first entry or the ldap _next entry function, from
which to extract controls.

serverctrlsp

(OUT) Points to an array of LDAPControl structures copied out of the entry. If this parameter is
set to NULL, no controls are returned.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

Standard LDAP Functions 165

Remarks

Each LDAPControl structure represents one LDAP v3 server control. When the array of
LDAPControl structures is no longer in use, free the memory by calling the Idap controls_free
function.

See Also

ldap _control free (page 111), Idap _controls_free (page 112)

166 NDK: LDAP Libraries for C

Idap_get_Iderrno

Returns error information about the last LDAP operation. This function has been deprecated; use the
Idap get option function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap get lderrno (
LDAP *1d,
char **matchedDN,
char **errmsqg);

Parameters

1d
(IN) Points to the handle for the LDAP session.

matchedDN

(OUT) Points to the name of the lowest entry in the directory that was matched on the
operation.

errmsg

(OUT) Points to a text string that is optionally returned by the server. This string includes
additional details about the error and is not the standard string associated with the error code.
Applications should not depend on format of this parameter or assume that it contains data.

Return Values

Returns the LDAP error code from the last operation. Use the 1dap_err2string function to get the text
string associated with this error code.

Remarks

The pointers returned in the function point directly into the LDAP structure.

NOTE: The application should not free these pointers. The pointers must not be used after another
LDAP operation has been called. The pointers should not be used to modify the data.

The application should examine or copy the strings before calling another LDAP function.

Standard LDAP Functions

167

The pointers are set after every LDAP operation which returns or parses an LDAP result message.

If information is not needed for either the matchedDN or the errmsg parameter, the parameter can be
set to NULL.

This is not a standard IETF function. It has been added for compatibility with other LDAP vendors'
libraries and should not be used in new applications. Use the Idap _get option function with
LDAP_OPT_ERR NUMBER, LDAP OPT MATCHED DN, and

LDAP_OPT _ERROR STRING

See Also

ldap_set lderrno (page 273), Idap_get option (page 169)

168 NDK: LDAP Libraries for C

Idap_get_option

Returns information about session preferences.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap get option (
LDAP *1d,
int option,
void *outvalue) ;

Parameters

Id

(IN) Contains the session handle. If this is NULL, the function returns information about global
defaults.

option

(IN) Contains the name of the option for which information is returned (see Section 6.10,
“Session Preference Options,” on page 425).

outvalue

(OUT) Returns a pointer to a buffer that contains the information about the specified option.

Return Values

0x00 LDAP_SUCCESS
-1 Failure
Remarks

The type of buffer pointed to by the outvalue parameter depends on the option requested. For details,
see Section 6.10, “Session Preference Options,” on page 425.

See Also

ldap_set option (page 275)

Standard LDAP Functions 169

Idap_get_values

Returns string values of a specified attribute from an entry.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char **ldap get values (

LDAP *1d,
LDAPMessage *entry,
const char *attr);
Parameters
1d
(IN) Points to the handle for the LDAP session.
entry
(IN) Points to the entry returned by the Idap _first entry or the ldap next entry function.
attr

(IN) Points to the attribute returned by the ldap _first attribute function, the Idap_next_attribute
function, or the name of an attribute in string format.

Return Values

>0 An array of attribute values
NULL Failure or no values were found for the attribute
Remarks

The ldap_get values function takes an entry and attribute and returns a NULL-terminated array of
attribute string values. The memory for the array is dynamically allocated. When you are done with
the array, free the memory by calling the Idap value free function.

The Idap get values function can be used to return only character string values. For binary data, use
the Idap _get values_len function.

170 NDK: LDAP Libraries for C

See Also

ldap _get values len (page 172), Idap _count values (page 119), Idap_count values_len (page 120),
ldap value free (page 301), Idap_value free len (page 302)

Standard LDAP Functions 171

Idap_get_values_len

Returns binary values of a specified attribute from an entry.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

struct berval **ldap get values len (

LDAP *1d,
LDAPMessage *entry,
const char *attr);
Parameters
1d
(IN) Points to the handle for the LDAP session.
entry
(IN) Points to the entry returned by the Idap _first entry or the ldap next entry function.
attr

(IN) Points to the attribute returned by the ldap _first attribute function, the Idap_next_attribute
function, or the name of an attribute in string format.

Return Values

>0 An array of values
Null Failure or no values were found for the attribute
Remarks

The ldap_get values_len function takes an entry and attribute and returns the attribute values in a
NULL-terminated array of pointers to berval structures. The memory for the array is dynamically
allocated. When you are done with the array, free the memory by calling the ldap value free len
function.

172 NDK: LDAP Libraries for C

See Also

ldap_get values (page 170), Idap _count values (page 119), Idap_count values_len (page 120),
ldap value free (page 301), Idap_value free len (page 302)

Standard LDAP Functions 173

Idap_gssbind

Authenticates the specified client to the LDAP server using the SASL-GSSAPI mechanism.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.8 or higher

Platform: Solaris, Linux, AIX, HP-UX

Syntax

#include <ldap gss.h>

int ldap gssbind (

LDAP *1d,

const char *host,

char *mechanism,
const char *dn,

const char *passwd,

gss _err code *err code);

Parameters
1d
(IN) Points to the handle for the LDAP session.

host

(IN) Contains the names of the available hosts, each separated by a space, or a list of [P
addresses (in dot format) of the hosts, each separated by a space. If a port number is included
with the name or the address, it is separated from them with a colon (:).

mechanism

(IN) Supported mechanism. Set this parameter to GSSAPI (for Kerberos V5.)

dn

(IN) Points to the distinguished name of the entry that is authenticating. Set this parameter to
NULL if GSSAPI (Kerberos V5) is used as an input mechanism.

passwd

(IN) Points to the client's password. Set this parameter to NULL if GSSAPI (Kerberos V5) is
used as input mechanism.

err_code

(OUT) Points to the requested attribute names and values.

Return Values

LDAP_GSS_ERROR 0x62

174 NDK: LDAP Libraries for C

LDAP_GSS_SECURITY_ERROR 0x63
LDAP_GSS IMPORT ERROR 0x64

See Also

ldap_gss_error (page 176)

Standard LDAP Functions 175

Idap_gss_error

Converts GSSAPI error into a character string.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.8 or higher

Platform: Solaris, Linux, AIX, HP-UX

Syntax

#include <ldap gss.h>

char * ldap gss error (
gss_err code *err) ;

Parameters

err

(IN) Points to the GSS error code structure.

Return Values

>0 Pointer to a zero-terminated character string.

See Also

ldap gssbind (page 174)

176 NDK: LDAP Libraries for C

Idap_init

Initializes an LDAP session associated with an LDAP server and returns a pointer to a session
handle.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

LDAP *ldap init (
const char *host,
int port);

Parameters

host

(IN) Contains the names of the available hosts, each separated by a space, or a list of [P
addresses (in dot format) of the hosts, each separated by a space. If a port number is included
with the name or the address, it is separated from them with a colon (:).

port

(IN) Contains the TCP port number to connect to. If a port number is included with the host
parameter, this parameter is ignored.

Return Values

>0 Success; session handle
NULL Unsuccessful
Remarks

If you connect to an LDAP v2 server, you must call an LDAP bind operation before performing any
operations. If you connect to an LDAP v3 server, some operations can be performed before calling a
bind operation.

The ldap_init function does not actually communicate with the LDAP server. Communication
begins when the application binds or does some other operation.

The LDAP libraries first contact the first server listed in the host parameter. If they are unable to
communicate with that server, they try the next server and then the next.

Standard LDAP Functions

177

The session handle returned contains opaque data identifying the session. To get or set handle
information, use Idap_set option and ldap_get option. For a list of the handle options, see
Section 6.10, “Session Preference Options,” on page 425.

IMPORTANT: The Idap _init function allocates memory for the LDAP structure. This memory
must be freed by calling ldap _unbind or ldap unbind_s even when an LDAP bind function is not
called or the LDAP bind function fails.

See Also

ldap _get option (page 169), Idap _set option (page 275), Idap_open (page 212)

178 NDK: LDAP Libraries for C

Idap_is_Idap_url

Determines whether the URL is an LDAP URL.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap is ldap url (
const char *url) ;

Parameters

url
(IN) Points to the URL that you want to check.

Return Values

1 URL is an LDAP URL
0 URL is not an LDAP URL
Remarks

An LDAP URL has the protocol set to ldap:// for simple authentication.

See Also

ldap _url_parse (page 291), Idap is_Idaps_url (page 180)

Standard LDAP Functions 179

Idap_is_Idaps_url

Determines whether the URL is an LDAPS URL.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap is ldaps url (
const char *url) ;

Parameters

url
(IN) Points to the URL that you want to check.

Return Values

1 URL is an LDAPS URL
0 URL is not an LDAPS URL
Remarks

An LDAPS URL has the protocol set to ldaps:// for an encrypted SSL connection.

See Also

ldap _url parse (page 291), Idap_is_Idap url (page 179)

180 NDK: LDAP Libraries for C

Idap_memfree

Frees memory allocated by a call to the LDAP libraries.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap memfree (

char *mem) ;
Parameters
mem

(IN) Points to the memory to free. If this argument is NULL, the function does nothing.

Remarks

The ldap_memfree function is used to free memory the LDAP libraries allocated for names on calls
to the 1dap_first_attribute, ldap next attribute, and ldap _get dn functions.

See Also

Idap_first attribute (page 152), Idap next attribute (page 203), Idap get dn

Standard LDAP Functions 181

Idap_modify

Asynchronously modifies the specified entry on the LDAP server.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modify (

LDAP *1d,
const char *dn,
LDAPMod **mods) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
mods

(IN) Points to a NULL-terminated array of pointers to the modifications to make to the entry.
Each LDAPMod structure contains the modifications for one attribute.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

To obtain the results of the operation, call the ldap_result function with the returned message ID.

If the 1dap_modify function returns -1, check the LDAP_OPT RESULT CODE option in the
LDAP handle for the error code.

To free the memory used by the LDAPMod structures, call the 1dap_mods_free function.

Use the Idap_rename or Idap_rename_s function to modify the entry's name.

182 NDK: LDAP Libraries for C

See Also

ldap_modify s (page 188), Idap _modify_ext (page 184), Idap_modify_ext s (page 186),
ldap _rename (page 235), Idap_rename_s (page 237)

Standard LDAP Functions 183

Idap_modify_ext

Asynchronously modifies specified attributes of an entry on an LDAP server, using LDAP client or
server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modify ext (

LDAP *1d,
const char *dn,
LDAPMod **mods,

LDAPControl **serverctrls,
LDAPControl **clientctrls,

int *msgidp) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
mods
(IN) Points to a NULL-terminated array of pointers to the modifications to make to the entry.
Each LDAPMod structure contains the modifications for one attribute.
serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
modify operation. Use NULL to specify no server controls.
clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with the
modify operation. Use NULL to specify no client controls.
msgidp

(OUT) Points to the message ID of the request when the search request succeeds.

184 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

If successful, the message ID of the operation is placed in the msgidp parameter. To obtain the
results of the operation, call the Idap_result function using the message ID returned in the msgidp

parameter.

Use the Idap _rename or Idap rename_s function to modify the entry's name.

eDirectory does not currently support any server-side controls to use with modify operations.

See Also

ldap_modify (page 182), ldap_modify s (page 188), ldap_modify ext s (page 186)

Standard LDAP Functions 185

Idap_modify_ext_s

Synchronously modifies specified attributes of an entry on an LDAP server, using LDAP client or
server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modify ext s (

LDAP *1d,
const char *dn,
LDAPMod **mods,

LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn
(IN) Points to the distinguished name of the entry to modify.

mods
(IN) Points to a NULL-terminated array of pointers to the modifications to make to the entry.
Each LDAPMod structure contains the modifications for one attribute.

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
modify operation. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
modify operation. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

186 NDK: LDAP Libraries for C

0x53 LDAP_ENCODING_ERROR
O0x5A LDAP_NO_MEMORY

Remarks

Use the ldap_rename or Idap rename_s function to modify the entry's name.
eDirectory does not currently support any server-side controls to use with modify operations.

For sample code, see modattrs.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap_modify (page 182), Idap_modify s (page 188), Idap_modify ext (page 184)

Standard LDAP Functions 187

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_modify_s

Synchronously modifies the specified entry on an LDAP server.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modify s (

LDAP *1d,
const char *dn,
LDAPMod **mods) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
mods

(IN) Points to a NULL-terminated array of pointers to the modifications to make to the entry.
Each LDAPMod structure contains the modifications for one attribute.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

Use the Idap _rename or Idap rename_s function to modify the entry's name.

188 NDK: LDAP Libraries for C

See Also

ldap_modify (page 182), Idap_modify ext (page 184), Idap_modify ext s (page 186)

Standard LDAP Functions 189

Idap_modrdn

Asynchronously modifies the relative distinguished name of a specified entry. This function has
been deprecated; use the Idap rename function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modrdn (

LDAP *1d,
const char *dn,
const char *newrdn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
newrdn

(IN) Points to the new relative distinguished name for the entry. The entry's parent must remain
the same.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

The ldap_modrdn function replaces the old rdn with the value of the new rdn.

The ldap_modrdn function has been replaced by the ldap_rename function. Unless you need this
older function for backwards compatibility, use the newer ldap_rename function.

190 NDK: LDAP Libraries for C

See Also

ldap _rename (page 235), Idap_rename_s (page 237)

Standard LDAP Functions 191

Idap_modrdn_s

Synchronously modifies the relative distinguished name of a specified entry. This function has been
deprecated; use the Idap_rename_s function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modrdn s (

LDAP *1d,
const char *dn,
const char *newrdn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
newrdn

(IN) Points to the new relative distinguished name for the entry. The entry's parent must remain
the same.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

The ldap_modrdn_s function replaces the old rdn with the value of the new rdn.

The ldap_modrdn_s function has been replaced by the Idap rename function. Unless you need this
older function for backwards compatibility, use the newer ldap_rename_s function.

192 NDK: LDAP Libraries for C

See Also

ldap _rename (page 235), Idap_rename_s (page 237)

Standard LDAP Functions 193

Idap_modrdn2

Asynchronously modifies the relative distinguished name of the specified entry. This function has
been deprecated; use the Idap rename function.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modrdn2 (
LDAP *1d,
const char *dn,
const char *newrdn,

int deleteoldrdn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
newrdn
(IN) Points to the new relative distinguished name for the entry. The entry's parent must remain
the same.
deleteoldrdn

(IN) Specifies whether the old RDN should be retained or deleted.

¢ Zero indicates that the old RDN should be retained. If you choose this option, the attribute
will contain both names (the old and the new).

+ Non-zero indicates that the old RDN should be deleted.

Return Values

>0 Message ID of operation

-1 Failure

194 NDK: LDAP Libraries for C

Remarks

The ldap_modrdn2 function has been replaced by the ldap _rename function. Unless you need this
older function for backwards compatibility, use the newer ldap_rename function.

See Also

ldap _rename (page 235), Idap_rename_s (page 237)

Standard LDAP Functions 195

Idap_modrdn2_s

Synchronously modifies the relative distinguished name of the specified entry. This function has
been deprecated; use the Idap rename_s function.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap modrdn2 s (
LDAP *1d,
const char *dn,
const char *newrdn,

int deleteoldrdn) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry to modify.
newrdn
(IN) Points to the new relative distinguished name for the entry. The entry's parent must remain
the same.
deleteoldrdn

(IN) Specifies whether the old RDN should be retained or deleted.

¢ Zero indicates that the old RDN should be retained. If you choose this option, the attribute
will contain both names (the old and the new).

+ Non-zero indicates that the old RDN should be deleted.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

196 NDK: LDAP Libraries for C

Remarks

The ldap_modrdn2_s function has been replaced by the Idap rename function. Unless you need this
older function for backwards compatibility, use the newer ldap_rename_s function.

See Also

ldap _rename (page 235), Idap_rename_s (page 237)

Standard LDAP Functions 197

Idap_msgfree

Frees each message in the result chain pointed to by the res parameter and returns the type of the last
message in the chain.

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap msgfree (
LDAPMessage *res);

Parameters

res

(IN) Points to the message chain to free. If res is set to NULL, nothing is done.

Return Values

>0x60 Success
0x00 Nothing was done.
Remarks

The ldap_msgfree function is used to free the memory allocated by the Idap_result, Idap_search s,
Idap_search_st, and Idap _search_ext s functions and returns the type of the last message in the
chain.

For a list of possible message types returned by this function, see Section 6.9, “Result Message
Types,” on page 424.

See Also

ldap msgid (page 199), Idap_msgtype (page 200)

198 NDK: LDAP Libraries for C

Idap_msgid

Returns the message ID associated with the res parameter.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap msgid (
LDAPMessage *res);

Parameters

res

(IN) Points to a message chain returned by the ldap result, ldap_search_s, Idap _search_st, or
ldap_search _ext s function.

Return Values

>0 The message ID
-1 Failure
See Also

ldap_msgfree (page 198), Idap_msgtype (page 200)

Standard LDAP Functions 199

Idap_msgtype
Returns the type of message associated with the res parameter.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap msgtype (
LDAPMessage *res);

Parameters

res

(IN) Points to a message chain returned by the ldap result, ldap_search_s, Idap _search_st, or
ldap_search _ext s function.

Return Values

>0x60 Type of message
-1 Failure
Remarks

For a list of possible types, see Section 6.9, “Result Message Types,” on page 424.

See Also

ldap _msgfree (page 198), Idap_msgid (page 199)

200 NDK: LDAP Libraries for C

Idap_multisort_entries

Sorts a chain of entries, returned by an LDAP search operation, using either the entries’ DN or a
specified array of attributes.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap multisort entries (
LDAPMessage *1d
LDAPMessage **res

char **attrs
int (*cmp) (const void *, const void *));
Parameters
1d
(IN) Points to the handle of the LDAP session.
res
(IN) Points to a message chain returned by the ldap result, ldap_search_s, Idap_search_st, or
ldap_search _ext s function.
attrs
(IN) Points to the array of attributes to use for sorting. Pass in NULL to sort by distinguished
name.
cmp

(IN) Points to a function to use for sorting. This function returns an int and has two void
pointers for parameters.

Return Values

0 Success
-1 Failure
Remarks

If the function returns failure, use ldap _get option (page 169) to check the
LDAP_OPT RESULT_CODE option in the LDAP handle for the error code.

Standard LDAP Functions 201

The sorting order is not well defined when attributes have multiple values. The number of values
and the order in which they are received affect the sorting order. For consistent results, use this
function with attributes containing single values.

See Also

ldap_result (page 239), Idap_sort_entries (page 283), Idap_search_s (page 268),
ldap_sort_strcasecmp (page 285).

202 NDK: LDAP Libraries for C

Idap_next_attribute

Returns the name of the next attribute in an entry.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char *ldap next attribute (

LDAP *1d,
LDAPMessage *entry,
BerElement *ptr);
Parameters
1d
(IN) Points to the handle for the LDAP session.
entry
(IN) Points to the entry whose attributes are being read.
ptr

(IN/OUT) Points to a value used internally to track the current position in the entry. For the first
call, use the value returned by the ldap_first attribute function. In subsequent calls, use the
value returned by the previous ldap next_attribute call. When the application is done with the
ptr, it should free the BerElement by calling the ber_free (ptr, 0) function.

Return Values

NULL No more attributes or failure
>0 Pointer to the name of the next attribute
Remarks

The ldap_next_attribute function returns a pointer to the next attribute of an entry returned by either
the Idap_first entry or the ldap next entry function.

If NULL is returned and the ptr parameter is not NULL, check the LDAP OPT RESULT CODE
option in the LDAP handle for the error code.

Standard LDAP Functions 203

If NULL is returned and the ptr parameter is NULL, all attributes have been retrieved.

The pointer to the name of the attribute should be passed to the ldap _get values function (or others
of'its type) to retrieve the attribute's values. When you are done with this pointer, you must free it by
calling the ldap_memfree function.

The ptr parameter should be used in subsequent calls to the ldap_next_attribute function to retrieve
other attributes of the entry. When you are done with the BerElement structure and its value is non-
NULL, you must free it by calling the ber_free function with the second parameter set to 0. If the ptr
parameter is set to NULL, then the 1dap next_attribute function frees the memory.

See Also

Idap_first_attribute (page 152), Idap _get values (page 170)

204 NDK: LDAP Libraries for C

Idap_next_entry

Returns a pointer to the next entry of message type, LDAP RES SEARCH ENTRY, in chain of
LDAPMessage structures.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

LDAPMessage *ldap next entry (
LDAP *1d,
LDAPMessage *entry) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

entry

(IN/OUT) Points to the next LDAPMessage structure in the chain. On the first call, this is the
value returned by the Idap_first entry function. On subsequent calls, it is the value returned by
the ldap _next entry function.

Return Values

NULL No more entries in the chain or failure
>0 Pointer to the next entry in the chain
Remarks

If the Idap next entry function encounters an error, the function returns NULL and sets the
LDAP_OPT _RESULT_CODE option in the LDAP session handle.

Use the Idap_get dn, Idap_first_attribute, ldap _get values functions to retrieve information about
the entry.

Standard LDAP Functions 205

See Also
ldap_first _entry (page 154), ldap _count_entries (page 113), ldap_search (page 260),

ldap _search_ext (page 262), Idap_search_ext s (page 265), Idap_search_s (page 268),
ldap_search_st (page 270)

206 NDK: LDAP Libraries for C

Idap_next_message

Returns a pointer to the next message of message type, LDAP RES SEARCH_ENTRY,
LDAP RES SEARCH RESULT, or LDAP RES SEARCH REFERENCE, in chain of
LDAPMessage structures.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

LDAPMessage *ldap next message (
LDAP *1d,
LDAPMessage *msqg) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

msg

(IN/OUT) Points to the LDAPMessage structure returned by a previous call. On the first call,
this is the value returned by the Idap_first message function. On subsequent calls, it is the
value returned by the ldap_next message function.

Return Values

NULL No more messages or failure.
>0 Pointer to the next message in the chain
Remarks

If the Idap_next_message function encounters an error, the function returns NULL and sets the
LDAP_OPT _RESULT_CODE option in the LDAP session handle.

See Also

ldap_first message (page 156), ldap count messages (page 115), Idap_msgid (page 199),
ldap msgtype (page 200), ldap _search (page 260), ldap _search _ext (page 262), ldap _search _ext s
(page 265), 1dap_search_s (page 268), Idap search_st (page 270)

Standard LDAP Functions 207

Idap_next_reference

Returns a pointer to the next reference of message type, LDAP_RES SEARCH REFERENCE, in
chain of LDAPMessage structures.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

LDAPMessage *ldap next reference (
LDAP *1d,
LDAPMessage *ref);

Parameters

1d
(IN) Points to the handle for the LDAP session.

ref

(IN/OUT) Points to the next LDAPMessage structure in the search result chain. On the first
call, this is the value returned by the Idap_first reference function. On subsequent calls, it is the
value returned by the ldap_next_reference function.

Return Values

NULL No more references in the chain or failure
>0 Pointer to the next reference in the chain.
Remarks

If the Idap_next_reference function encounters an error, the function returns NULL and sets the
LDAP_OPT _RESULT_CODE option in the LDAP session handle.

See Also

ldap_first reference (page 158), Idap count references (page 117), ldap_parse_reference
(page 220), 1dap_search (page 260), Idap_search_ext (page 262), Idap_search_ext s (page 265),
ldap search_s (page 268), Idap_search_st (page 270)

208 NDK: LDAP Libraries for C

Idap_nmas_err2string

Converts the numeric NMAS error code into a character string.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char *ldap nmas err2string (
int err);

Parameters

err
(IN) Specifies the NMAS error code returned by LDAP function.

Return Values

>0 Pointer to a zero-terminated character string

Remarks

The ldap_nmas_err2string function converts the NMAS error codes returned by the following
function:

¢ ldap nmas_get errcode
The NMAS error code is converted to a zero-terminated character string that describes the error.
The return value points to a string contained in the static data.
Ensure not to perform the following:

¢ Call the ldap_nmas_err2string till you use or copy the return value.
¢ Use the pointer to modify the original string.

¢ Use the application program to clear the string.
If the API succeeds, errno is set to 0. Otherwise, the returned string will be in the local code page.

You can use the returned pointer directly in a printf statement as mentioned in the following
example:

Standard LDAP Functions

209

ldap bind nmas s(..);

rc =
err=1ldap nmas get errcode(...);
if (err !'= 0) {

char *s;

s= ldap nmas err2string(err);
printf ("Search error: %$s\n",s); }

See Also
ldap bind nmas_s (page 95), ldap nmas_get errcode (page 211)

210 NDK: LDAP Libraries for C

Idap_nmas_get_errcode

Returns the NMAS error code, if there is any error.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap nmas get errcode(void);

Return Values

>0 Pointer to the NMAS error code

Remarks

The ldap_nmas_get errcode function returns the NAMS error code, if there is any error. The error
code is captured from the following function:

ldap bind nmas s

The NMAS error code is a negative value, which points to a specific NMAS error. You can use
ldap nmas_err2string method to retrieve the appropriate error string corresponding to the NMAS
error code returned by Idap nmas_get_errcode function.

See Also

ldap bind nmas_s (page 95), Ildap _nmas_err2string (page 209)

Standard LDAP Functions 211

Idap_open

Initializes the LDAP library and opens a connection to the LDAP server. This function has been
deprecated; use the ldap_init function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

LDAP *ldap open (
const char *hostname,
int portno) ;

Parameters

hostname

(IN) Contains the names of the available hosts, each separated by a space, or a list of IP
addresses (in dot format) of the hosts, each separated by a space. If a port number is included
with the name or the address, it is separated from them with a colon (:), for example
hostname:port.

portno

(IN) Contains the TCP port number to connect to. If a port number is included with the
hostname parameter, this parameter is ignored.

Return Values

>0 Pointer to a session handle
NULL Failure to establish a session
Remarks

The port number assigned to LDAP is 389.

If the connection is established to an LDAP v2 server, an LDAP bind function must be called before
any other operations can be performed.

212 NDK: LDAP Libraries for C

See Also

ldap_init (page 177)

Standard LDAP Functions 213

Idap_parse_entrychange_ control

Decodes the information returned from a search operation that used a persistent search control.

LDAP Version: v3
Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse entrychange control (

(IN) A pointer to an array of pointers to controls returned by the server. The controls are
obtained by calling the ldap_get entry controls() function on an entry returned by the server.

LDAP *1d,
LDAPControl **ctls,
int *changeType,
char **prevDN,
int *hasChangeNum,
long *changeNum) ;
Parameters
1d
(IN) Points to the handle of the LDAP session.
ctrls
changeType

(OUT) A pointer to an integer specifying the type of change made to the entry. Valid flags are

as follows:

LDAP_CHANGETYPE_ADD

LDAP_CHANGETYPE_DELETE

LDAP_CHANGETYPE_MODIFY
LDAP_CHANGETYPE_MODDN

Specifies that the entry was added to the
directory.

Specifies that the entry was deleted from the
directory.

Specifies that the entry was modified.

Specifies that the DN or RDN of the entry was
changed (a modify RDN or modify DN
operation was performed).

214 NDK: LDAP Libraries for C

prevDN

(OUT) A pointer to the previous DN of the entry, if the changetypes argument is
LDAP _CHANGETYPE MODDN. (If the changetypes argument has a different value, this
argument is set to NULL.)

When done, you should free this by calling the ldap_memfree function.This parameter is
optional and can be set to NULL.
hasChangeNum

(OUT) A pointer to an integer specifying whether or not the change number is included in the
control. A non-zero value indicates that the change number is included and is available as the
changeNum argument. Zero indicates that the change number is not included. This parameter
and the changeNum parameter must either both be NULL or both be non-NULL.

changeNum

(OUT) A pointer to the change number identifying the change made to the entry. This
parameter and the hasChangeNum parameter must either both be NULL or both be non-NULL.
Change numbers are typically only returned by servers that support a change log.

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_DECODING_ERROR

0x5A LDAP_NO_MEMORY

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

The ldap_parse_entrychange control function examines the controls returned with and entry as a
result of a persistent search operation. If an entry change control is present, the control is parsed and
its elements' values are retrieved. This function should be called after an entry is returned to the
client as a result of a persistent search operation. An entry’s controls are retrieved by calling the
ldap_get entry controls function.

For example code, see searchPersist.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

See Also

ldap search_ext (page 262), ldap get entry controls (page 165),
ldap create persistentsearch control (page 123)

Standard LDAP Functions

215

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_parse_extended_resulit

Retrieves data from an LDAPMessage that contains data from an extended operation.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse extended result (

LDAP *1d,
LDAPMessage *res,
char **retoidp,
struct berval **retdatap,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
res
(IN) Points to an LDAPMessage containing the results of an LDAP extended operation.
retoidp
(OUT) Points to the dotted-OID text string that represents the name of the extended operation.
Pass in NULL to ignore this field. When you are finished, you must free this string by calling
the ldap_memfree function.
retdatap
(OUT) Points to a berval structure that contains data from the extended operation response.
freeit

(IN) Specifies whether the resources allocated by the res parameter are freed.

¢ Zero indicates that the resources used by the res parameter are not freed automatically.
When you are done with the res parameter, you need to call the Idap_msgfree function to
free the memory.

+ Non-zero indicates that memory is freed after the function extracts the information.

216 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Remarks

After calling the 1dap_extended operation and Idap_result functions, use
ldap parse_extended result to parse the extended information returned by the LDAP server.

See Also

ldap_err2string (page 142), ldap _parse_result (page 224), Idap_parse sasl bind result (page 227)

Standard LDAP Functions 217

Idap_parse_intermediate

Retrieves intermediate data from an LDAPMessage that contains data from an extended operation.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse intermediate (

LDAP *1d,
LDAPMessage *res,
char **retoidp,
struct berval **retdatap,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
res
(IN) Points to an LDAPMessage containing the results of an LDAP extended operation.
retoidp
(OUT) Points to the dotted-OID text string that represents the name of the extended operation.
Pass in NULL to ignore this field. When you are finished, you must free this string by calling
the ldap_memfree function.
retdatap
(OUT) Points to a berval structure that contains data from the extended operation response.
freeit

(IN) Specifies whether the resources allocated by the res parameter are freed.

¢ Zero indicates that the resources used by the res parameter are not freed automatically.
When you are done with the res parameter, you need to call the Idap_msgfree function to
free the memory.

+ Non-zero indicates that memory is freed after the function extracts the information.

218 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Remarks

After calling the ldap _extended operation and ldap _result functions, use ldap _parse_intermediate to
parse intermediate extended information results returned by the LDAP server.

See Also

ldap_err2string (page 142), ldap _parse_result (page 224), Idap_parse sasl bind result (page 227),
ldap parse extended result (page 216)

Standard LDAP Functions 219

Idap_parse_reference

Extracts URLs and controls from an LDAPMessage structure of type
LDAP _RES SEARCH REFERENCE.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse reference (

LDAP *1d,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
ref
(IN) Points to the reference to parse which was returned by the ldap_result,
Idap_first reference, Idap_next reference, Idap first message, or ldap next message
function.
referralsp
(OUT) Points to a NULL-terminated array of strings which contains zero or more alternate
LDAP server URLs where the request can be sent. Pass in NULL to ignore this parameter.
When you are finished, free the referrals array by calling the Idap value free function.
serverctrisp

(OUT) Points to aa NULL-terminated array of LDAPControl structures which are returned by
the LDAP server and which list the controls the LDAP server supports. When you are finished,
free the control array by calling the Idap controls_free function. Pass in NULL to ignore this
parameter.

220 NDK: LDAP Libraries for C

freeit
(IN) Specifies whether the resources specified by the ref parameter are freed.

+ Zero indicates that the resources specified by the res parameter are not freed
automatically. When you are done with the LDAPMessage structure, you must call the
ldap_msgfree function to free the memory.

+ Non-zero indicates that memory is freed by the ldap parse reference function after it
extracts the information.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

See Also

Idap_first reference (page 158), Idap next_reference (page 208)

Standard LDAP Functions 221

Idap_parse_reference_control

Decodes the information returned from a search operation that used a server-side sort control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax
#include <ldap.h>ldap parse reference control (
LDAP *1d,
LDAPControl **ctrls,
char *1locRef,
int refType,
char *remainingName,
int scope,
char **searchedSubtrees,
char *failedName)
Parameters
1d
(IN) Points to the handle of the LDAP session.
ctrls
(IN) Points to the address of a null-terminated array of LDAPControl structures obtained by a
call to the ldap_parse_result function.
locRef
(OUT) Names the DSE found to hold distributed knowledge information.
refType
(OUT) Indicates the DSE type of ContinuationReference.
remainingName
(OUT) Indicates the new target object if localReference do not completely name the DSE.
searchScope
(OUT) Indicates the search scope of the search operation.
searchedSubtrees
(OUT) Indicates that the search operation has already searched the subtree.
failedName

(OUT)Specifies the non-local names.

222 NDK: LDAP Libraries for C

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”.

Standard LDAP Functions 223

Idap_parse_result

Extracts error, referral, and server control information from an LDAPMessage structure.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse result (

LDAP *1d,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
res
(IN) Points to an LDAPMessage containing the results of an LDAP operation.
errcodep
(OUT) Points to the LDAP error code that specifies the results of the last LDAP operation.
matcheddnp
(OUT) Points to a string that specifies how much of the name in the request was recognized.
Pass in NULL to ignore this parameter. When you are finished, you must free the matched DN
string by calling the ldap_memfree function.
errmsgp

(OUT) Points to the error message string that is associated with the error code. Pass in NULL
to ignore this parameter. When you are finished, you must free the error message string by
calling the ldap _memfree function.

224 NDK: LDAP Libraries for C

referralsp

(OUT) Points to a NULL-terminated array of strings which contains zero or more alternate
LDAP server URLs where the request can be sent. Pass in NULL to ignore this parameter.
When you are finished, you must free the referrals array by calling the ldap_value free
function.

serverctrlsp
(OUT) Points to a NULL-terminated array of LDAPControl structures which are returned by
the LDAP server and which list the controls the LDAP server supports. When you are finished,
you must free the control array by calling the 1dap_controls_free function.

freeit
(IN) Specifies whether the resources specified by the res parameter are freed.

¢ Zero indicates that the resources specified by the res parameter are not freed
automatically. When you are done with the LDAPMessage structure, you must call the
ldap_msgfree function to free the memory.

+ Non-zero indicates that memory is freed by the Idap _parse result function after it extracts
the information.

Return Values

0x00 LDAP_SUCCESS

Ox5E LDAP_NO_RESULTS_RETURNED

Ox5F LDAP_MORE_RESULTS_TO_RETURN

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Remarks

Upon successful completion, the ldap_result function returns the type of the first result returned in
the res parameter. The type will be one of the following constants:

LDAP_RES_BIND
LDAP_RES SEARCH_ENTRY
LDAP_RES SEARCH_REFERENCE
LDAP_RES_SEARCH RESULT
LDAP_RES MODIFY
LDAP_RES_ADD
LDAP RES DELETE
LDAP_RES_MODDN

LDAP_RES _COMPARE
LDAP_RES_EXTENDED

Standard LDAP Functions 225

The Idap_parse result function cannot be used to parse LDAP_ RES SEARCH_ENTRY or
LDAP RES SEARCH REFERENCE messages. Use ldap_first entry to parse entries. Use
Idap parse reference to parse references.

If a chain of messages is passed to this function, the function operates only on the first message in
the result chain that is not of type LDAP_RES SEARCH_ENTRY or

LDAP RES SEARCH REFERENCE. Use the ldap first message and ldap next message
functions to step through a chain of messages.

If the result message contains data from an extended operation, use the ldap parse extended result
function to retrieve additional information.

See Also

ldap_err2string (page 142), ldap parse extended result (page 216), Idap parse sasl bind result
(page 227)

226 NDK: LDAP Libraries for C

Idap_parse_sasl_bind_result

Extracts SASL bind information from an LDAPMessage structure.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse sasl bind result (

LDAP *1d,
LDAPMessage *res,
struct berval **servercredp,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
res
(IN) Points to an LDAPMessage containing the results of an LDAP operation.
servercredp
(OUT) Points to the credentials passed back by the LDAP server to use for mutual
authentication. When done with the structure, free the memory by calling the ber_bvfree
function.
freeit

(IN) Specifies whether the resources allocated by the res parameter are freed.

¢ Zero indicates that the resources used by the res parameter are not freed automatically.
When you are done with the res parameter, you need to call the Idap_msgfree function to
free the memory.

+ Non-zero indicates that memory is freed after the function extracts the information.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Standard LDAP Functions 227

0x5A LDAP_NO_MEMORY
0x5C LDAP_NOT_SUPPORTED

Remarks

After calling the 1dap_sasl_bind and the 1dap_result functions, use the 1dap_parse sasl bind result
to obtain the SASL bind information.

See Also

ldap_err2string (page 142), ldap _parse_extended result (page 216), Idap_parse result (page 224)

228 NDK: LDAP Libraries for C

Idap_parse_sort_control

Decodes the information returned from a search operation that used a server-side sort control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse sort control (

LDAP *1d,
LDAPControl **ctrls,
unsigned long *returnCode,
char **attribute);
Parameters
1d
(IN) Points to the handle of the LDAP session.
ctrls
(IN) Points to the address of a NULL-terminated array of LDAPControl structures, usually
obtained by a call to the ldap_parse result function.
returnCode
(OUT) Points to the sort control result code. This parameter must not be NULL. See Remarks
for a list of possible return codes.
attribute

(OUT) If the sort operation fails, the server may return a string that indicates the first attribute
in the sortKey list that caused the failure. If this parameter is NULL, no string is returned. If a
string is returned, the memory should be freed by calling the ldap_memfree function.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”.

Standard LDAP Functions 229

Remarks

The returnCode parameter returns one of the following values.

Return Value Description

success (0) Server returned sorted results.

operationsError (1) Server had an internal failure.

timeLimitExceeded (3) Server reached the time limit before the sorting was
completed.

strongAuthRequired (8) Server refused to return sorted results over an insecure
protocol.

adminLimitExceeded (11) The results contain too many matching entries for the server
to sort.

noSuchAttribute (16) Server does not recognized an attribute type in the sort key.

inappropriateMatching (18) Server does not recognized the matching rule in the sort
key, or the matching rule is inappropriate for the attribute
type.

insufficientAccessRights (50) Server refused to return sorted results to this client.

busy (51) Server is too busy to process.

unwillingToPerform (53) Server is unable to sort the results.

other (80) An error occurred.

For example code, see sortentl.c and vlventl.c (http://developer.novell.com/ndk/doc/samplecode/
cldap sample/index.htm).

See Also

ldap_create_sort_control (page 126)

230 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_parse_sstatus_control

Decodes the information returned from a search status control.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>ldap parse sstatus_control (
LDAP *1d,
LDAPControl **ctrls,
int *numEax,
int *numPass,
int *evaDone,
int *numAva)

Parameters

1d
(IN) Points to the handle of the LDAP session.

ctrls

(IN) Points to the address of a null-terminated array of LDAPControl structures, obtained by a
call to the ldap parse_result function.

numEax

(OUT) Indicates the number of examined records.

numPass

(OUT) Indicates the number of examined records that matchs the search criteria.

evaDone

(OUT) Indicates the evaluation done.

numAva

(OUT) Indicates the number of records available

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”.

Standard LDAP Functions 231

Idap_parse_viv_control

Decodes the information returned from a search operation that used a VLV (virtual list view)
control.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 8.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse vlv control (

LDAP *1d

LDAPControl **ctrlp,

unsigned long *target posp,

unsigned long *list countp,

struct berval **contextp,

int *errcodep) ;
Parameters
1d

(IN) Points to the handle of the LDAP session.
ctrlp

(IN) Points to a NULL-terminated array of LDAPControl structures, typically obtained by
calling the ldap parse result function.

target_posp
(OUT) Points to the list index of the target entry. If this parameter is NULL, the target position
is not returned. The index returned is an approximation of the position of the target entry. It is
not guaranteed to be exact.

list countp
(OUT) Points to the server's estimate of the size of the list. If this parameter is NULL, the size
is not returned.

contextp

(OUT) Points to the address of a berval structure that contains a server-generated context
identifier if server returns one. If server does not return a context identifier, the server returns a
NULL in this parameter. If this parameter is set to NULL, the context identifier is not returned.

You should use this returned context in the next call to create a VLV control.

232 NDK: LDAP Libraries for C

When the berval structure is no longer needed, you should free the memory by calling the
ber_bvfree function.

errcodep

(OUT) Points to the result code returned by the server. If this parameter is NULL, the result
code is not returned. See Remarks for a list of possible return codes.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. See “LDAP Return Codes”.
0x5D LDAP_CONTROL_NOT_FOUND
Remarks

The errcodep parameter returns one of the following values.

Return Value Description

success (0) Server returned VLV results.

operationsError (1) Server had an internal failure.

timeLimitExceeded (3) Server reached the time limit before the virtual list view was
completed.

adminLimitExceeded (11) The results contain too many matching entries for the server

to place in a virtual list view.

insufficientAccessRights (50) Server refused to return sorted results to this client.
busy (51) Server is too busy to process.

unwillingToPerform (53) Server is unable to sort the results.
sortControlMissing (60) The sort control for the virtual list view is missing.
offsetRangeError (61) The offset is set to less than zero.

other (80) An error occurred.

For example code, see vlventl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

berval (page 441), LDAPControl (page 487)

Standard LDAP Functions 233

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_perror

Prints a specified message and the current LDAP error message to standard error. This function has
been deprecated; use the Idap err2string function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
void ldap perror (

LDAP *1d,
const char *msqg) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

msg

(IN) Points to the message that is displayed before the LDAP error message.

See Also

ldap err2string (page 142), Idap parse result (page 224)

234 NDK: LDAP Libraries for C

Idap_rename

Asynchronously renames the specified entry.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap rename (

LDAP *1d,

const char *dn,

const char *newrdn,

const char *newparent,
int deleteoldrdn,

LDAPControl **serverctrls,
LDAPControl **clientctrls,

int *msgidp) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry that is being renamed.
newrdn
(IN) Points to the new relative distinguished name to give the entry.
newparent
(IN) Points to the distinguished name of the entry's new parent. If this parameter is NULL, only
the RDN is changed. The root DN is specified by passing a zero length string, "".
This function can be used with LDAP v2 servers if the newparent parameter is NULL. LDAP
v2 does not allow the entry to be moved to a new parent.
deleteoldrdn

(IN) Specifies whether the old RDN should be retained or deleted.

¢ Zero indicates that the old RDN should be retained. If you choose this option, the attribute
will contain both names (the old and the new).

+ Non-zero indicates that the old RDN should be deleted.

Standard LDAP Functions 235

serverctrls

(IN) Points to an array of LDAPControl structures that list the server controls to use with the
rename. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
rename. Use NULL to specify no client controls.

msgidp

(OUT) Points to the message ID of the request when the rename request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Remarks

The ldap_rename function changes the leaf component of an entry's distinguished name and
optionally moves the entry to a new parent container.

To obtain the results of the operation, call the Idap_result function using the message ID in the
msgidp parameter.

eDirectory does not currently support any server-side controls to use with renaming an entry.

See Also

ldap rename_s (page 237)

236 NDK: LDAP Libraries for C

Idap_rename_s

Synchronously renames the specified entry.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap rename s (

LDAP *1d,

const char *dn,

const char *newrdn,

const char *newparent,
int deleteoldrdn,

LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn
(IN) Points to the distinguished name of the entry that is being renamed.

newrdn

(IN) Points to the new relative distinguished name to give the entry.

newparent

(IN) Points to the distinguished name of the entry's new parent. If this parameter is NULL, only
the RDN is changed. The root DN is specified by passing a zero length string, "".

This function can be used with LDAP v2 servers if the newparent parameter is NULL. LDAP
v2 does not allow the entry to be moved to a new parent.

deleteoldrdn
(IN) Specifies whether the old RDN should be retained or deleted.

¢ Zero indicates that the old RDN should be retained. If you choose this option, the attribute
will contain both names (the old and the new).

+ Non-zero indicates that the old RDN should be deleted.

Standard LDAP Functions 237

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
rename. Use NULL to specify no server controls.

clientctrls

(IN) Points to an array of LDAPControl structures that list the client controls to use with the
rename. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Remarks

eDirectory does not currently support any server-side controls to use with renaming an entry.

For sample code, see renamerdn.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap rename (page 235)

238 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_result

Obtains results from a previous asynchronously initiated operation.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap result (
LDAP *1d,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

msgid

(IN) Specifies the message ID returned in the LDAP operation's msgidp parameter. Accepts the
following special flags:

¢+ LDAP RES UNSOLICITED (0) indicates that an unsolicited result is requested.
¢ LDAP _RES ANY (-1) indicates that any result is to be returned.

all

(IN) Specifies how many messages are retrieved in a single call to the 1dap _result function.
Uses one of the following flags:

+ LDAP_MSG_ONE (0x00) indicates that messages are retrieved one at a time.

+ LDAP MSG ALL (0x01) indicates that all results of the search must be received before
returning with all the messages in a single chain.

+ LDAP _MSG_RECEIVED (0x02) indicates that all messages received so far must be
returned in a result chain.

timeout
(IN) Points to a timeval structure that specifies how long to wait for the results to be returned.
¢ To block until the results are available, pass a NULL value.

+ To cause continuous polling, set the tv_sec field in the timeval structure to zero seconds.

Standard LDAP Functions 239

res

(OUT) Points to the results of the search. If no results are returned, this parameter is set to
NULL.

Return Values

0x00 Timeout expired
-1 Failure
Remarks

Only asynchronous search operations can contain more than one message.

Upon successful completion, the ldap result function returns the type of message. For a list of
possible types, see Section 6.9, “Result Message Types,” on page 424.

If the Idap_result function returns a -1, use the ldap_get option function with the option parameter
set to LDAP_OPT RESULT_CODE to retrieve the error code from the LDAP session handle.

The ldap_result function allocates memory for the res parameter. When you are done with it, free the
memory by calling the ldap_msgfree function.

See Also

ldap msgfree (page 198), Idap_msgid (page 199), Ildap msgtype (page 200)

240 NDK: LDAP Libraries for C

Idap_result2error

Converts the result message into a numeric LDAP error code. This function has been deprecated.
Use the Idap parse result function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_ resultZerror (

LDAP *1d,
LDAPMessage *res,
int freeit);
Parameters
1d
(IN) Points to the handle for the LDAP session.
res
(IN) Points to an LDAPMessage containing the results of an Idap result or ldap search_s
operation.
freeit

(IN) Specifies whether the resources allocated by the res parameter are freed.

+ Zero indicates that the resources used by the res parameter are not freed automatically.
When you are done with the res parameter, you need to call the Idap_msgfree function to
free the memory.

+ Non-zero indicates that memory is freed after the function extracts the information

Return Values

>0 LDAP error code. See “LDAP Return Codes”.

Remarks

The Idap _result2error function does the following:

¢ Converts the result message into a numeric LDAP error code.

Standard LDAP Functions 241

¢ Parses the result message and puts the matched distinguished name in the
LDAP OPT MATCHED DN option of the LDAP session handle.

¢ Parses the result message and puts the error code in the LDAP_OPT_ERROR_STRING option
of the LDAP session handle.

All synchronous operation routines call the 1dap_result2error function before returning, ensuring
that the options are set correctly.

See Also

ldap parse_result (page 224), Idap parse extended result (page 216), Idap perror (page 234)

242 NDK: LDAP Libraries for C

Idap_sasl_bind

Asynchronously authenticates the specified client to the LDAP server using a Simple Authentication
Security Layer (SASL).

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_sasl bind (

LDAP *1d,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry who is authenticating.
mechanism
(IN) Points to the method to use for authentication, either
+ LDAP_SASL SIMPLE (NULL) for simple authentication
¢ A dotted-string representation of the OID identifying the SASL method
cred
(IN) Points to the credentials with which to authenticate.
serverctrls
(IN) Points to a list of server controls. Use NULL to specify no server controls.
clientctrls

(IN) Points to a list of client controls. Use NULL to specify no client controls.

Standard LDAP Functions 243

msgidp
(OUT) Points to the message ID of the request when the bind request succeeds.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

The Idap _sasl bind function is an asynchronous function and does not return the results directly. To
obtain the results, call the Idap_parse result function using the message ID in the msgidp parameter.

If you want the function to return the results directly, use the ldap_sasl bind s function.

If the ldap_sasl bind function returns -1, check the LDAP OPT RESULT CODE option in the
LDAP handle for the error code.

The LDAP_OPT NETWORK TIMEOUT option (set by calling Idap set option (page 275))
enables you to set a timeout for the initial connection to a server. If no timeout is set, timeout
depends upon the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by spaces in a bind call,
then use a timeout to determine how long your application will wait for an initial response before
attempting a connection to the next host in the list.

Passing NULL for the 1d parameter of Idap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap init (page 177) or Idapssl_init (page 306).
To clear the timeout pass NULL for the invalue parameter of ldap _set_option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

See Also

ldap sasl bind s (page 245), Idap_parse sasl bind result (page 227)

244 NDK: LDAP Libraries for C

Idap_sasl bind_s

Synchronously authenticates the specified client to the LDAP server using a Simple Authentication
Security Layer (SASL).

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_sasl bind s (

LDAP *1d,
const char *dn,
const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp) ;
Parameters
Id
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name of the entry who is authenticating.
mechanism
(IN) Points to the method to use for authentication, either
+ LDAP_SASL SIMPLE (NULL) for simple authentication
¢ A dotted-string representation of the OID identifying the SASL method
cred
(IN) Points to the credentials with which to authenticate.
serverctrls
(IN) Points to a list of server controls. Use NULL to specify no server controls.
clientctrls

(IN) Points to a list of client controls. Use NULL to specify no client controls.

Standard LDAP Functions 245

servercredp

(OUT) Points to the credentials passed back by the server for mutual authentication. The berval
structure must be freed by calling the ber_bvfree function. To ignore this parameter, set it to
NULL.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Remarks

The LDAP_OPT NETWORK TIMEOUT option (set by calling Idap set option (page 275))
enables you to set a timeout for the initial connection to a server. If no timeout is set, timeout
depends upon the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by spaces in a bind call,
then use a timeout to determine how long your application will wait for an initial response before
attempting a connection to the next host in the list.

Passing NULL for the 1d parameter of Idap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap init (page 177) or Idapssl_init (page 306).
To clear the timeout pass NULL for the invalue parameter of ldap _set_option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

See Also

ldap_sasl bind (page 243)

246 NDK: LDAP Libraries for C

Idap_schema_fetch

Connects to a directory and retuns the schema to an LDAPSchema struct.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap schema fetch (
1DAP 1d,

LDAPSchema **schema,
const char *subschemaSubentryDN) ;

Parameters

1d
(IN) LDAP session handle.

schema

(OUT) Address of a handle to LDAPSchema, contains a local copy of the entire directory
schema.

subschemaSubentryDN
(IN) Distinguished name of the entry from which to return schema.
Return Values

See the “LDAP Return Codes” for return values.

Remarks

A call to Idap_schema_fetch will connect to a directory and locate the SubSchemaSubEntry. It
allocates an LDAPSchema structure and populates it with all available schema definitions.

The schema will be read from the subschemaSubentry passed in. If subschemaSubentryDN is NULL
then the first subschemaSubentry listed in the root DSE will be used.

NOTE: Setting the SubSchemaSubentryDN to NULL requires version 3 and eDirectory 8.xx.

See Also

ldap schema _free (page 248)

Standard LDAP Functions 247

Idap_schema_free

Frees the memory allocated to an LDAPSchema handle.
Library: *1dapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema free (
LDAPSchema *schema);

Parameters

schema

(IN) Handle to a local copy of directory schema.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

For every handle created by ldap schema fetch, Idap schema free must be called to free the
memory.

See Also

ldap _schema fetch (page 247)

248 NDK: LDAP Libraries for C

Idap_schema_get by name

Retrieves a handle to a schema element, identified by its type and either a name or oid.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema get by name (

LDAPSchema *schema,
char* nameOr0id,
int elementType,

LDAPSchemaElement **element);

Parameters

schema
(IN) A handle to the schema of an LDAP directory.

nameOrOid

(IN) Name or oid of the schema element requested.

elementType

(IN) Type of element requested. Use the definitions listed in Section 6.11, “Schema Element
Types,” on page 430.

element

(OUT) Address to a handle of the schema element requested. The user must not modify this
memory.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

The returned handle to an LDAPSchemaElement structure, ’element’, is a pointer to memory within
the LDAPSchema structure, ’schema’. Therefore if ’schema’ changes or is freed, *element’ may also
change, or become invalid. Likewise, if the user frees or tampers with element’, ’schema’ may
become corrupted.

Standard LDAP Functions 249

Idap_schema_get _count

Returns the count of schema elements of the type specified.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema get count (

LDAPSchema *schema,

int elementType) ;
Parameters
schema

(IN) A handle to the schema of an LDAP directory.

elementType

(IN) Type of element requested. Use the definitions listed in Section 6.11, “Schema Element
Types,” on page 430.

Return Values

Return value is -1 if the LDAPSchema structure is invalid or the elementType is invalid. Otherwise
the return value is the count of schema elements.

Remarks

Ldap schema get count is used to get valid values for the index parameter of
ldap schema get by index (page 251).

See Also

ldap schema get by index (page 251)

250 NDK: LDAP Libraries for C

Idap_schema_get by index

Allows you to iterate through schema elements of a specific type.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema get by index (

LDAPSchema *schema,
int index,
int elementType,

LDAPSchemaElement **element);

Parameters

schema
(IN) A handle to the schema of an LDAP directory.

index
(IN) index of the desired schema element. (Uses array numbering; starts at zero.

ldap schema get count (page 250) is used to determine valid indices for this parameter.

elementType
(IN) Type of element requested. Use the definitions listed in Section 6.11, “Schema Element
Types,” on page 430.

element

(OUT) Address to a handle of the schema element requested. The user must not modify this
memory.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

The index is zero based and goes through Idap schema get count - 1. The returned handle to an
LDAPSchemaElement structure, ’element’, is a pointer to memory within the LDAPSchema
structure, ’schema’. Therefore if ’schema’ changes or is freed, ’element’ may also change, or
become invalid. Likewise, if the user frees or tampers with ’element’, ’schema’ may become
corrupted.

Standard LDAP Functions

251

Remarks

See Also

ldap schema get count (page 250)

252 NDK: LDAP Libraries for C

Idap_schema_get_field_names

Retrieves a list of field names in a null-terminated array.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap schema get field names (

LDAPSchemaElement *element,
char *(* fieldnames|[]));

Parameters

element

(IN) Handle to a Schema element.

fieldNames

(OUT) Address of a null-terminated array of string pointers that contain all field names defined
for this schema element. Free this memory with ldap value free (page 301).

Return Values

See the “LDAP Return Codes” for return values.

Standard LDAP Functions 253

Idap_schema_get_field _values

Retrieves a list of field names in a null-terminated array.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema get field values (
LDAPSchemaElement *element,

char *fieldName,
char *(*values[]));
Parameters
element

(IN) Handle to a Schema element.

fieldName

(IN) Name of the field for which values are requested. See Section 6.11, “Schema Element
Types,” on page 430.

values

(OUT) Null-terminated array of string pointers containing the values for a field. Free this
memory with ldap value free (page 301).

Return Values

See the “LDAP Return Codes” for return values.

Remarks

Valid field names are listed in Section 6.11, “Schema Element Types,” on page 430. Some fields,
although valid, may not have values (For example, LDAP_SCHEMA OBSOLETE.) In this case
values will be NULL and the return value will be LDAP _SUCCESS. If the field name does not exist
values will be NULL and LDAP_NO_SUCH_ATTRIBUTE is returned.

254 NDK: LDAP Libraries for C

Idap_schema_add

Adds a schema element definition to the local copy of schema in an LDAPSchema structure.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema add (
LDAPSchema *schema,
int type,
LDAPSchemaMod *fields|[]);

Parameters

schema

(IN) A handle to the schema of a directory.

type
(IN) Type of element requested. Use the definitions listed in Schema Element Types.

fields

(IN) An array of pointers to LDAPSchemaMod structures. Each structure represents a field in
an attribute definition. Idap schema_add ignores the *op’ field in this structure.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

ldap schema add will construct a new schema element definition from the schema mod structures
passed in and add the definition to the LDAPSchema structure passed in. Additions are only made to
the LDAPSchema structure. To commit this addition to the directory, call Idap _schema save

(page 259).

Standard LDAP Functions 255

Idap_schema_modify

Modifies an existing schema element definition.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema modify (

LDAPSchema *schema,
char *nameOr0id,
int type,

LDAPSchemaMod *fieldsToChangel]);

Parameters
schema

(IN) A handle to the schema of a directory.
nameOrOid

(IN) A name or OID that identifies the schema definition to modify.

type
(IN) Type of element to modify. Use the definitions listed in Section 6.11, “Schema Element
Types,” on page 430.

fieldsToChange

(IN) An null-terminated array of pointers of LDAPSchemaMod structures. Each structure
represents a field in an attribute definition.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

ldap_schema modify modifies an existing schema element definition. Using an existing definition
in schema, this constructs a new definition according the list of fields passed in. Modifications are
only made to the LDAPSchema structure. To commit this modification to the directory, call

ldap _schema save (page 259).

256 NDK: LDAP Libraries for C

A field with an operation code of LDAP_ MOD_ADD will add values to a field, creating new fields
if one does not already exist. A field with an operation code of LDAP MOD REPLACE will
replace the existing field values, or creating new values if the field does not exist. A field with an
operation of LDAP MOD DELETE will remove the field values listed, if they exist.

Standard LDAP Functions 257

Idap_schema_delete

Removes a schema element definition from the directory and from the local copy of schema in an
LDAPSchema structure.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap schema delete (

LDAPSchema *schema,
char *nameOr0id,
int type) ;
Parameters
schema

(IN) A handle to the schema of a directory.

nameOrOid

(IN) A name or OID that identifies the schema definition to modify.

type
(IN) Type of element to modify. Use the definitions listed in Section 6.11, “Schema Element
Types,” on page 430.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

ldap_schema delete removes a schema element definition from the from the local copy of schema in
an LDAPSchema structure, ’schema’. Deletions are only made to the LDAPSchema structure. To
commit deletions to the directory, call Ildap _schema save (page 259).

258 NDK: LDAP Libraries for C

Idap_schema_save

Commits any changed made in the LDAPSchema structure since the schema was fetched from a
directory.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_ schema save (

LDAP *1d,
LDAPSchema *schema,
const char *subschemaSubentryDN) ;
Parameters
Id
(IN) LDAP session handle.
schema
(IN) A handle to the schema of a directory..
subschemaSubentryDN

(IN) Distinguished name of the entry from which to return schema.

Return Values

See the “LDAP Return Codes” for return values.

Remarks

The schema changes will be saved to the subschemaSubentry passed in. If subschemaSubentryDN is
NULL then the first subschemaSubentry listed in the root DSE will be used.

NOTE: Setting the SubSchemaSubentryDN to NULL requires version 3 and eDirectory 8.xx.

All changes made to the LDAPSchema structure using Idap schema_add, Idap schema modify,
and ldap_schema_delete, are sent to the directory as a single transactional request.

Standard LDAP Functions 259

Idap_search

Asynchronously searches the directory.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_ search (
LDAP *1d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly);

Parameters

1d
(IN) Points to the handle for the LDAP session.

base

(IN) Points to the distinguished name of the entry from which to start the search.

scope
(IN) Specifies the scope of the search and uses one of the following flags:
¢+ LDAP_SCOPE BASE (0x00)—searches the entry specified by the base parameter.

¢+ LDAP _SCOPE _ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.

+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.

filter
(IN) Points to a search filter.

If NULL is passed, a default filter ("objectclass=*") is used, a filter which matches all entries in
the directory. Using a NULL filter is not recommended for subtree searches on trees that
potentially have hundreds of thousands of entries.

Simple filters take the form of strings: attribute name=attribute value. For more complex filters,
see “Using Search Filters” on page 37.

260 NDK: LDAP Libraries for C

attrs

(IN) Points to a NULL-terminated array of strings indicating which attributes to return with
each matching entry. To return only entry names (and no attributes), set the first, and only string
in the array, to LDAP_NO_ATTRS. To return all attributes, set this parameter to NULL.

For example, to return the cn, surname, and givenName attributes, declare attrs as: char*
attrs[]={"cn", "surname", "givenName", NULL};
attrsonly
(IN) Specifies whether to return just attributes or attributes and values.
¢ Zero—return both attributes and values

¢ Non-zero—return only attributes

Return Values

>0 Message ID of operation
-1 Failure
Remarks

The Idap_search function is an older function which does not allow you to specify LDAP controls.

The LDAP_OPT_ DEREF option in the LDAP session handle affects how aliases are handled during
the search.

¢+ The LDAP_DEREF_FINDING value means aliases are dereferenced when locating the base
object but not during the search.

¢ The LDAP DEREF SEARCHING value means aliases are dereferenced during the search but
not when locating the base object of the search.

To obtain the results of the operation, call the ldap result function using the message ID returned to
the ldap_search function.

If the function returns a -1, use the Idap _get option function with the option parameter set to
LDAP_OPT RESULT_CODE to retrieve the error code from the LDAP session handle.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP OPT SIZELIMIT options on the LDAP handle. This function has no client time or size
limits.

See Also

ldap _search_ext (page 262), Idap_search_st (page 270)

Standard LDAP Functions

261

Idap_search_ext

Asynchronously searches the directory using LDAP client or server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap search ext (

LDAP *1d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
base
(IN) Points to the distinguished name of the entry from which to start the search.
scope
(IN) Specifies the scope of the search and uses one of the following flags:
¢+ LDAP_SCOPE BASE (0x00)—searches the entry specified by the base parameter.
+ LDAP_SCOPE _ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.
+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.
filter

(IN) Points to a search filter.

262 NDK: LDAP Libraries for C

If NULL is passed, a default filter ("objectclass=*") is used, a filter which matches all entries in
the directory. Using a NULL filter is not recommended for subtree searches on trees that
potentially have hundreds of thousands of entries.

Simple filters take the form of strings: attribute name=attribute value. For more complex filters,
see “Using Search Filters” on page 37.
attrs

(IN) Points to a NULL-terminated array of strings indicating which attributes to return with
each matching entry. To return only entry names (and no attributes), set the first, and only string
in the array, to LDAP_NO_ATTRS. To return all attributes, set this parameter to NULL.

For example, to return the cn, surname, and givenName attributes, declare attrs as: char*
attrs[]={"cn", "surname", "givenName", NULL};
attrsonly
(IN) Specifies whether to return just attributes or attributes and values.
+ Zero—return both attributes and values

+ Non-zero—return only attributes

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
search. Use NULL to specify no server controls.

clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with the
search. Use NULL to specify no client controls.

timeout

(IN) Points to a timeval structure that specifies the maximum time to wait for the results of a
search to complete. It specifies both the time the server waits for the operation to complete as
well as the time the local function waits for the server to respond. If the timeout parameter is set
to NULL, the client timeout is infinite and the server uses the timeout value stored in the
session handle option, LDAP_OPT_TIMELIMIT (whose default value is no timeout). For
more information about possible values, see timeval (page 503).
sizelimit
(IN) Specifies the maximum number of entries to return.
¢ To specify no limit, pass LDAP_NO_LIMIT (0).
¢ To use the current value in the LDAP session handle (the LDAP_OPT SIZELIMIT
option), pass LDAP_DEFAULT SIZELIMIT (-1).
msgidp
(OUT) Points to the message ID of the request if the search request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

Standard LDAP Functions

263

0x53 LDAP_ENCODING_ERROR

0x55 LDAP_TIMEOUT
0X57 LDAP_FILTER_ERROR
Remarks

The LDAP_OPT_ DEREF option in the LDAP session handle affects how aliases are handled during
the search.

¢+ The LDAP DEREF FINDING value means aliases are dereferenced when locating the base
object but not during the search.

¢+ The LDAP _DEREF SEARCHING value means aliases are dereferenced during the search but
not when locating the base object of the search.

eDirectory supports two server controls:

¢ Server-side sorting—1.2.840.113556.1.4.473
¢ Virtual list views—2.16.840.1.113730.3.4.9

To obtain the results of the operation, call the ldap result function using the message ID returned to
the Idap_search_ext function.

Server timeouts and size limits for this function are set using the LDAP _OPT_TIMELIMIT and
LDAP OPT SIZELIMIT options on the LDAP handle. Client timeouts and size limits are set using
the timeout and sizelimit parameters.

For sample code, see searchas.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap_search (page 260), Idap _search_st (page 270)

264 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_search_ext_s

Synchronously searches the directory using LDAP client or server controls.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap search ext s (

LDAP *1d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res);
Parameters
1d
(IN) Points to the handle for the LDAP session.
base
(IN) Points to the distinguished name of the entry from which to start the search.
scope
(IN) Specifies the scope of the search and uses one of the following flags:
¢+ LDAP_SCOPE BASE (0x00)—searches the entry specified by the base parameter.
+ LDAP_SCOPE _ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.
+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.
filter

(IN) Points to a search filter.

Standard LDAP Functions 265

If NULL is passed, a default filter ("objectclass=*") is used, a filter which matches all entries in
the directory. Using a NULL filter is not recommended for subtree searches on trees that
potentially have hundreds of thousands of entries.

Simple filters take the form of strings: attribute name=attribute value. For more complex filters,
see “Using Search Filters” on page 37.
attrs

(IN) Points to a NULL-terminated array of strings indicating which attributes to return with
each matching entry. To return only entry names (and no attributes), set the first, and only string
in the array, to LDAP_NO_ATTRS. To return all attributes, set this parameter to NULL.

For example, to return the cn, surname, and givenName attributes, declare attrs as: char*
attrs[]={"cn", "surname", "givenName", NULL};
attrsonly
(IN) Specifies whether to return just attributes or attributes and values.
+ Zero—return both attributes and values

+ Non-zero—return only attributes

serverctrls
(IN) Points to an array of LDAPControl structures that list the server controls to use with the
search. Use NULL to specify no server controls.

clientctrls
(IN) Points to an array of LDAPControl structures that list the client controls to use with the
search. Use NULL to specify no client controls.

timeout

(IN) Points to a timeval structure that specifies the maximum time to wait for the results of a
search to complete. It specifies both the time the server waits for the operation to complete as
well as the time the local function waits for the server to respond. If the timeout parameter is set
to NULL, the client timeout is infinite and the server uses the timeout value stored in the
session handle option, LDAP_OPT_TIMELIMIT (whose default value is no timeout). For
more information about possible values, see timeval (page 503).

sizelimit
(IN) Specifies the maximum number of entries to return.
¢ To specify no limit, pass LDAP_NO_LIMIT (0).
¢ To use the current value in the LDAP session handle (the LDAP_OPT SIZELIMIT
option), pass LDAP_DEFAULT SIZELIMIT (-1).
res

(OUT) Returns a pointer to an array of result messages if the search succeeds or NULL if no
results are returned.

Return Values

0x00 LDAP_SUCCESS

266 NDK: LDAP Libraries for C

Non-zero Failure. For a complete list, see “LDAP Return Codes”.

0x53 LDAP_ENCODING_ERROR
0x55 LDAP_TIMEOUT

0X57 LDAP_FILTER_ERROR
Remarks

The LDAP_OPT DEREF option in the LDAP session handle affects how aliases are handled during
the search.

¢+ The LDAP DEREF FINDING value means aliases are dereferenced when locating the base
object but not during the search.

¢ The LDAP DEREF SEARCHING value means aliases are dereferenced during the search but
not when locating the base object of the search.

eDirectory supports two server controls:

¢ Server-side sorting—1.2.840.113556.1.4.473
¢ Virtual list views—2.16.840.1.113730.3.4.9

You must use the Idap_result and the ldap parse result functions to retrieve the results of the search.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP OPT SIZELIMIT options on the LDAP handle. Client timeouts and size limits are set using
the timeout and sizelimit parameters.

For sample code, see search.c and searchmsg.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

See Also

ldap search (page 260), ldap search s (page 268), Idap search st (page 270), Idap search ext
(page 262)

Standard LDAP Functions 267

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_search_s

Synchronously searches the directory.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap search s (

LDAP *1d,

const char *base,

int scope,
const char *filter,
char **attrs,

int attrsonly,

LDAPMessage **res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

base

(IN) Points to the distinguished name of the entry from which to start the search.

scope
(IN) Specifies the scope of the search and uses one of the following flags:
+ LDAP_SCOPE BASE (0x00)—searches the entry specified by the base parameter.

¢+ LDAP SCOPE ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.

+ LDAP SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.
filter
(IN) Points to a search filter.

If NULL is passed, a default filter ("objectclass=*") is used, a filter which matches all entries in
the directory. Using a NULL filter is not recommended for subtree searches on trees that
potentially have hundreds of thousands of entries.

Simple filters take the form of strings: attribute name=attribute value. For more complex filters,
see “Using Search Filters” on page 37.

268 NDK: LDAP Libraries for C

attrs

(IN) Points to a NULL-terminated array of strings indicating which attributes to return with
each matching entry. To return only entry names (and no attributes), set the first, and only string
in the array, to LDAP_NO_ATTRS. To return all attributes, set this parameter to NULL.

For example, to return the cn, surname, and givenName attributes, declare attrs as: char*
attrs[]={"cn", "surname", "givenName", NULL};
attrsonly
(IN) Specifies whether to return just attributes or attributes and values.
¢ Zero—return both attributes and values

¢ Non-zero—return only attributes

res

(OUT) Returns a pointer to an array of result messages if the search succeeds or NULL if no
results are returned.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0X57 LDAP_FILTER_ERROR

Remarks

The ldap_search function is an older function which does not allow you to specify LDAP controls.

The LDAP_OPT_DEREF option in the LDAP session handle affects how aliases are handled during
the search.

¢+ The LDAP DEREF FINDING value means aliases are dereferenced when locating the base
object but not during the search.

¢+ The LDAP DEREF SEARCHING value means aliases are dereferenced during the search but
not when locating the base object of the search.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP_OPT_ SIZELIMIT options on the LDAP handle. This function has no client time or size
limits.

See Also

ldap search ext (page 262), ldap search_ext s (page 265), ldap search_st (page 270)

Standard LDAP Functions

269

Idap_search_st

Synchronously searches the directory within a specified time limit.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap search st (
LDAP *1d,
const char *base,
int scope,
const char *filter,
char **attrs,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

base

(IN) Points to the distinguished name of the entry from which to start the search.

scope
(IN) Specifies the scope of the search and uses one of the following flags:
+ LDAP SCOPE BASE (0x00)—searches the entry specified by the base parameter.

¢+ LDAP SCOPE ONELEVEL (0x01)—searches the immediate subordinates of the entry
specified by the base parameter.

+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.
filter
(IN) Points to a search filter.

If NULL is passed, a default filter ("objectclass=*") is used, a filter which matches all entries in
the directory. Using a NULL filter is not recommended for subtree searches on trees that
potentially have hundreds of thousands of entries.

Simple filters take the form of strings: attribute name=attribute value. For more complex filters,
see “Using Search Filters” on page 37.

270 NDK: LDAP Libraries for C

attrs

(IN) Points to a NULL-terminated array of strings indicating which attributes to return with
each matching entry. To return only entry names (and no attributes), set the first, and only string
in the array, to LDAP_NO_ATTRS. To return all attributes, set this parameter to NULL.

For example, to return the cn, surname, and givenName attributes, declare attrs as: char*
attrs[]={"cn", "surname", "givenName", NULL};
attrsonly
(IN) Specifies whether to return just attributes or attributes and values.
¢ Zero—return both attributes and values

¢ Non-zero—return only attributes

timeout

(IN) Points to a timeval structure that specifies the maximum time to wait for the results of a
search to complete. The structure specifies both the time the server waits for the operation to
complete as well as the time the local function waits for the server to respond. If the timeout
parameter is set to NULL, the client timeout is infinite and the server uses the timeout value
stored in the session handle option, LDAP_OPT TIMELIMIT (whose default value is no
timeout). For more information about possible values, see timeval (page 503).

res

(OUT) Returns a pointer to an array of result messages if the search succeeds or NULL if no
results are returned.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

0x55 LDAP_TIMEOUT

0X57 LDAP_FILTER_ERROR

Remarks

The LDAP_OPT_ DEREF option in the LDAP session handle affects how aliases are handled during
the search.

¢+ The LDAP_DEREF_FINDING value means aliases are dereferenced when locating the base
object but not during the search.

¢ The LDAP_DEREF _SEARCHING value means aliases are dereferenced during the search but
not when locating the base object of the search.

The results in the res parameter are opaque to the caller. You must call Idap_parse result to read the
results.

Standard LDAP Functions

271

Remarks

To check the results of the operation, use the Idap_result or the Idap _result2error function.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP OPT_SIZELIMIT options on the LDAP handle. Client timeouts are set using the timeout
parameter. This function has no client size limit.

See Also

ldap_search (page 260), Idap _search ext (page 262), Idap search ext s (page 265), Idap search s
(page 268)

272 NDK: LDAP Libraries for C

Idap_set_Iderrno

Sets error information in an LDAP structure. This function has been deprecated; use the
Idap_set option function.

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap set lderrno (
LDAP *1d,
int errnum,

char *matchedDN,
char *errmsqg) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

errnum
(IN) Specifies the LDAP error number to set.

matchedDN

(IN) Points to the name of the lowest entry in the directory that was matched on the search
operation. May be NULL.

errmsg

(IN) Points to a text string that contains information from the LDAP server about this error.
May be NULL.

Return Values

Always returns LDAP_SUCCESS.

Remarks

The Idap_set lderrno function can be used to add or modify information about an error in an LDAP
handle. This information can be retrieved in a subsequent call to the Idap get Iderrno function.

The LDAP libraries make a copy of the string before storing it in the LDAP handle, so you do not
need to preserve the original string after the call.

Standard LDAP Functions 273

NOTE: This is not a standard IETF function. It has been added for compatibility with other LDAP
vendors' libraries and should not be used in new applications. Use the Idap_set option function with
LDAP_OPT ERR NUMBER, LDAP OPT MATCHED DN, and

LDAP OPT ERROR STRING

See Also

ldap_get _lderrno (page 167), Idap_set _option (page 275)

274 NDK: LDAP Libraries for C

Idap_set_option

Sets the value of session-wide parameters.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap set option (

LDAP *1d,
int option,
LDAP CONST void *invalue) ;
Parameters
1d
(IN) Points to the session handle. If this is NULL, the function accesses the global defaults.
option
(IN) Specifies the name of the option which is being set (see Section 6.10, “Session Preference
Options,” on page 425).
invalue

(IN) Points to the value to which the specified option is set.

Return Values

0x00 LDAP_SUCCESS
-1 Failure
Remarks

The ldap_init function returns the value for the 1d parameter. If you use the Idap_set option function
before calling ldap_init and use NULL for the 1d parameter, the values are set globally and copied to
all LDAP session handles you create afterwards. If the ldap_set_option function is called after the
Idap_init function, one of the following occurs:

¢ [fthe 1d parameter is NULL, the values are set globally but do not affect the values in currently
created LDAP session handles.

¢ [fthe 1d parameter is set to the value returned by the Idap _init function, the values are set for
only that LDAP session handle.

Standard LDAP Functions

275

The following examples illustrate how to globally set two of the options.

/* Don’t chase referrals */
rc = ldap set option(NULL, LDAP OPT REFERRALS, LDAP OPT OFF);

/* Set LDAP version 3 */
int version = LDAP VERSION3;
rc = ldap set option(NULL, LDAP OPT PROTOCOL VERSION, &version);

See Also

ldap get option (page 169)

276 NDK: LDAP Libraries for C

Idap_set_rebind_proc

Sets the process that is used to bind when following referrals.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap_ set rebind proc (

LDAP *1d,
LDAP_REBIND PROC *1ldap proc);

Parameters

1d
(IN) Points to the session handle. If this is NULL, the function sets the rebind process globally.

Idap_proc
(IN) Specifies the rebind function.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

The ldap_set_rebind proc function sets the process to use for binding when an operation returns a
referral. The LDAP_OPT REFERRALS option in the 1d must be set to ON for the libraries to use
the rebind function. Use the ldap set option function to set the value.

The rebind function has the following syntax.

int LIBCALL rebind function (

LDAP *1d,
const char *url,
int request,

ber int t msgid)
{
/* the body must perform a synchronous bind */

}

Standard LDAP Functions

277

The 1d parameter must be used by the application when binding to the referred server if the
application wants the libraries to follow the referral.

The url parameter points to the URL referral string received from the LDAP server. The LDAP
application can use the ldap url parse function to parse the string into its components.

The request parameter specifies the request operation that generated the referral. For possible
values, see Section 6.8, “Request Message Types,” on page 424.

The msgid parameter specifies the message ID of the request generating the referral.

The LDAP libraries set all the parameters when they call the rebind function. The application should
not attempt to free either the 1d or the url structures in the rebind function.

Your application must supply to the rebind function the required authentication information such as
user name, password, and certificates. The rebind function must use a synchronous bind method.

¢ [f an anonymous bind is sufficient for your application, then you do not need to provide a
rebind process. The LDAP libraries with the LDAP_OPT REFERRALS option set to ON
(default value) will automatically follow referrals using an anonymous bind.

¢ [f your application needs stronger authentication than an anonymous bind, you need to provide
a rebind process for that authentication method. The bind method must be synchronous.

For sample code, see rebind.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

See Also

ldap_set_option (page 275), ldap_url parse (page 291)

278 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_simple_bind

Asynchronously authenticates an entry to the directory.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_simple bind (
LDAP *1d,
char *dn,
char *passwd) ;

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the name of the entry to use for authentication. For an anonymous authentication,
set this parameter to NULL.

passwd

(IN) Points to the entry's password which will be compared to the entry's userPassword
attribute. For an anonymous authentication, set this parameter to NULL.

Return Values

>0 Message ID of operation
-1 Failure
Remarks

To obtain the results of the operation, call the Idap_result function using the message ID returned by
the Idap_simple bind function.

If the function returns a -1, use the Idap_get option function with the option parameter set to
LDAP OPT RESULT CODE to retrieve the error code from the LDAP session handle.

Standard LDAP Functions 279

By default, eDirectory does not accept clear text passwords. Make sure that the parameter for
encrypted passwords is set to allow unencrypted passwords.

An anonymous bind to an eDirectory directory allows clients to access whatever the [Public] user
has been granted access to. By default, this is just enough to allow the user to find an eDirectory
server, match a distinguished name, and authenticate.

The LDAP_OPT NETWORK TIMEOUT option (set by calling Idap_set option (page 275))
enables you to set a timeout for the initial connection to a server. If no timeout is set, timeout
depends upon the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by spaces in a bind call,
then use a timeout to determine how long your application will wait for an initial response before
attempting a connection to the next host in the list.

Passing NULL for the 1d parameter of 1dap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap init (page 177) or Idapssl_init (page 306).
To clear the timeout pass NULL for the invalue parameter of ldap_set _option.

A connection timeout will cause an LDAP_SERVER _DOWN error (81) "Can't contact LDAP
server".

See Also

ldap_bind (page 89), Idap_simple bind s (page 281), Idap_unbind, Idap unbind_s (page 287),
ldap _unbind ext, Idap unbind ext s (page 288)

280 NDK: LDAP Libraries for C

Idap_simple _bind_s

Synchronously authenticates the specified client to the LDAP server using a distinguished name and
password.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap simple bind s (
LDAP *1d,
const char *dn,
const char *passwd) ;

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the entry who is authenticating. For an anonymous
authentication, set this parameter to NULL.

passwd

(IN) Points to the client's password. For an anonymous authentication, set this parameter to
NULL.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x54 LDAP_DECODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Standard LDAP Functions 281

Remarks

By default, eDirectory does not accept clear text passwords. Make sure that the parameter for
encrypted passwords is set to allow unencrypted passwords.

An anonymous bind to an eDirectory directory allows clients to access whatever the [Public] user
has been granted access to. By default, this is just enough to allow the user to find an eDirectory
server, match a distinguished name, and authenticate.

The LDAP_OPT NETWORK TIMEOUT option (set by calling Idap set option (page 275))
enables you to set a timeout for the initial connection to a server. If no timeout is set, timeout
depends upon the underlying socket timeout setting of the operating system.

Using the connection timeout, you can also specify multiple hosts separated by spaces in a bind call,
then use a timeout to determine how long your application will wait for an initial response before
attempting a connection to the next host in the list.

Passing NULL for the 1d parameter of 1dap_set option sets this timeout as the default connection
timeout for subsequent session handles created with Idap_init (page 177) or Idapssl _init (page 300).
To clear the timeout pass NULL for the invalue parameter of ldap _set_option.

A connection timeout will cause an LDAP_SERVER DOWN error (81) "Can't contact LDAP
server".

For sample code, see bind.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap_simple_bind (page 279), Idap_unbind, ldap _unbind_s (page 287), Idap_bind (page 89),
ldap bind_s (page 97)

282 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_sort_entries

Sorts a chain of entries, returned by an LDAP search operation, using either the entries' DN or a
specified attribute.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_sort entries (
LDAP *1d,
LDAPMessage **res,
char *attr,
int (*cmp) (const void *, const void *));

Parameters

1d
(IN) Points to the handle of the LDAP session.

res
(IN) Points to an LDAPMessage containing the results returned by the ldap result or
Idap search_s function.
attr
(IN) Points to name of the attribute to use for sorting. Pass in NULL to sort by distinguished
name.
cmp

(IN) Points to a function to use for sorting. This function returns an int and has two void
pointers for parameters.

Return Values

0 LDAP_SUCCESS

-1 Failure.

Standard LDAP Functions 283

Remarks

If the function returns failure, use Idap get option (page 169) to check the
LDAP_OPT RESULT_CODE option in the LDAP handle for the error code.

See Also

ldap_result (page 239), Idap_search_s (page 268), Idap_sort_strcasecmp (page 285)

284 NDK: LDAP Libraries for C

Idap_sort_strcasecmp

Compares two strings, ignoring any differences in upper and lower case characters between the
strings.

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_sort strcasecmp (
const void *a,
const void *b) ;

Parameters

a

(IN) Points to the address of the pointer for first string to use in the compare.

(IN) Points to the address of the pointer for second string to use in the compare.

Return Values

0 String a is equal to string b.

>0 String a is greater than string b.
<0 String a is less than string b.
See Also

ldap_sort_values (page 286), Idap_sort_entries (page 283)

Standard LDAP Functions 285

Idap_sort_values

Sorts an array of values retrieved from an Idap _get values function.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_sort values (

LDAP *1d,
char **vals,
int (*cmp) (const void *, const void *));
Parameters
1d
(IN) Points to the handle of the LDAP session.
vals
(IN) Points to the array of values to sort.
cmp

(IN) Points to the function to use for sorting. This function returns an int and has two void
pointers for parameters. The ldap_sort_strcasecmp function can be used for this parameter to
compare ASCII strings.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
See Also

ldap_get values (page 170), Idap_sort_strcasecmp (page 285)

286 NDK: LDAP Libraries for C

Idap_unbind, Idap_unbind_s

Unbinds from the directory, closes the connection, and frees resources associated with the session.
Functionally, there are no differences between ldap_unbind and Idap _unbind_s.

LDAP Version: v2 or higher
Library: *ldapsdk.*
NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap_unbind[s] (
LDAP *1d);

Parameters

1d
(IN) Points to the handle of the LDAP session that is to be unbound.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
Remarks

After the call to ldap_unbind[_s], the session handle (1d) is invalid.

Note that there are no funtional differences between the four unbind functions.

See Also

ldap unbind ext, ldap unbind_ext s (page 288)

Standard LDAP Functions 287

Idap_unbind_ext, Idap_unbind_ext_s

Unbinds from the directory, closes the connection, and frees resources associated with the session.
Functionally, there are no differences between ldap unbind ext and ldap _unbind ext s.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap unbind ext[s] (
LDAP *1d,

LDAPControl **serverctrls,
LDAPControl **clientctrls);

Parameters

1d
(IN) Points to the handle of the LDAP session that is to be unbound.

serverctrls

(IN) Points to a list of server controls. Use NULL to specify no server controls.

clientctrls

(IN) Points to a list of client controls. Use NULL to specify no client controls.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
Remarks

After the call to ldap_unbind_ext[s], the session handle (Id) is invalid.

Ldap unbind_ext allows controls to be specified with the operation. eDirectory does not currently
support any server-side controls to use with an unbind operation.

Note that there are no functional differences between the four unbind functions.

288 NDK: LDAP Libraries for C

See Also

ldap _unbind, ldap unbind_s (page 287)

Standard LDAP Functions 289

Idap_url_desc2str

Converts from an LDAPURLDesc structure to a URL string.
LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

char* ldap url parse (
LDAPURLDesc *1ludp) ;

Parameters
ludpp

(IN) Points to an LDAPURLDesc structure that contains the components of the URL.
Return Values

This function returns an LDAP URL in string format. NULL is returned if an allocation error occurs.

Remarks

Since this function does not return a standard LDAP error code, you should not call 1dap_err2string
to parse the return code.

An LDAP URL has the following format:

ldap[s]://<hostname>:<port>/<base dn>?<attributes>?<scope>? <filter>?<extensions>

If you plan to convert an LDAPURLDesc structure to an LDAP URL string then back again, use
Idap url parse ext (page 293), as it is better retains the original format of the structure.

The string returned by this function should be freed with ldap _memfree.

See Also

ldap_memfree (page 181), Idap_url parse ext (page 293)

290 NDK: LDAP Libraries for C

Idap_url_parse

Parses the specified URL into its components.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap url parse (

const char *url,
LDAPURLDesc **1udpp) ;

Parameters

url

(IN) Points to the URL that you want to parse.

ludpp
(OUT) Points to an LDAPURLDesc structure that contains the components of the URL.

Return Values

This function does not return a standard LDAP error code. It returns one of the following:

0x00 LDAP_URL_SUCCESS

Non-zero Failure

0x01 LDAP_URL_ERR_MEM—can't allocate memory space

0x02 LDAP_URL_ERR_PARAM—invalid parameter

0x03 LDAP_URL_ERR_NOTLDAP—URL doesn't begin with "Idap[s]://"
0x04 LDAP_URL_ERR_BADENCLOSURE—URL is missing trailing ">"
0x05 LDAP_URL_ERR_BADURL—invalid URL

0x06 LDAP_URL_ERR_BADHOST—host port is invalid

0x07 LDAP_URL_ERR_BADATTRS—invalid or missing attributes
0x08 LDAP_URL_ERR_BADSCOPE—invalid or missing scope string
0x09 LDAP_URL_ERR_BADFILTER—invalid or missing filter

Standard LDAP Functions

291

O0x0A LDAP_URL_ERR_BADEXTS—invalid or missing extensions

Remarks

Since this function does not return a standard LDAP error code, you should not call ldap_err2string
to parse the return code.

Idap url parse ext (page 293) performs a similar function, but handles default values differently.
ldap_url parse_ext is better suited for situations where you must convert an LDAPURLDesc
structure back to a URL string, retaining the original form of the string.

The following lists describes how each field in the LDAPURLDesc structure is determined from the
LDAP URL:

lud_scheme: Contains the URL scheme (either ldap or 1daps).

lud_host: Points to the name of the host as a dotted IP address or DNS format Set to an empty string
if missing from URL.

lud_port: Contains the port from the URL. Set to 389 or 636 if missing, depending on the scheme.

lud_dn: Points to the distinguished name of the base entry from the URL. Set to an empty string if
missing.

lud_attrs: Points to a NULL-terminated list of attributes specified in the URL. NULL if no attributes
specified.

lud_scope: Contains the scope in the URL and uses one of the following flags.
LDAP_SCOPE_BASE (0x00)-searches the entry specified by the base parameter.
LDAP_SCOPE_ONELEVEL (0x01)-searches the entry specified by the base parameter and one
level beneath that entry.
LDAP_SCOPE_SUBTREE (0x02)-searches the entire subtree starting with the entry specified by
the base parameter.
Default is LDAP_SCOPE_BASE.

lud_filter: Points to the search filter specified in the URL. If NULL is passed, a default filter
("objectclass=*") is used.

lud_exts: Points to a NULL-terminated list of the extensions specified in the URL. NULL if no
extensions are specified.

Iud crit_exts: Specifies whether or not any critical extensions are included. Set to 1 if any critical
extension are included, otherwise set to 0.

See Also

ldap_free urldesc (page 160), Idap_url parse ext (page 293)

292 NDK: LDAP Libraries for C

Idap_url_parse_ext

Parses the specified URL into its components.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>
int ldap url parse ext (

const char *url,
LDAPURLDesc **1udpp) ;

Parameters

url

(IN) Points to the URL that you want to parse.

ludpp
(OUT) Points to an LDAPURLDesc structure that contains the components of the URL.

Return Values

This function does not return a standard LDAP error code. It returns one of the following:

0x00 LDAP_URL_SUCCESS

Non-zero Failure

0x01 LDAP_URL_ERR_MEM—can't allocate memory space

0x02 LDAP_URL_ERR_PARAM—invalid parameter

0x03 LDAP_URL_ERR_NOTLDAP—URL doesn't begin with "Idap[s]://"
0x04 LDAP_URL_ERR_BADENCLOSURE—URL is missing trailing ">"
0x05 LDAP_URL_ERR_BADURL—invalid URL

0x06 LDAP_URL_ERR_BADHOST—host port is invalid

0x07 LDAP_URL_ERR_BADATTRS—invalid or missing attributes
0x08 LDAP_URL_ERR_BADSCOPE—invalid or missing scope string
0x09 LDAP_URL_ERR_BADFILTER—invalid or missing filter

Standard LDAP Functions

293

O0x0A LDAP_URL_ERR_BADEXTS—invalid or missing extensions

Remarks

Since this function does not return a standard LDAP error code, you should not call ldap_err2string
to parse the return code.

ldap url parse performs a similar function but handles default values differently.
ldap_url parse_ext is better suited for situations where you must convert an LDAPURLDesc
structure back to a URL string, retaining the original form of the string.

The following lists describes how each field in the LDAPURLDesc structure is determined from the
LDAP URL:

lud_scheme: Contains the URL scheme (either ldap or 1daps).

lud_host: Points to the name of the host as a dotted IP address or DNS format Set to an empty string
if missing from URL.

lud_port: Contains the port from the URL. Set to 0 if missing.

lud_dn: Points to the distinguished name of the base entry from the URL. Set to an empty string if
missing.

lud_attrs: Points to a NULL-terminated list of attributes specified in the URL. NULL if no attributes
specified.

lud_scope: Contains the scope in the URL and uses one of the following flags.
LDAP_SCOPE_BASE (0)-searches the entry specified by the base parameter.
LDAP_SCOPE_ONELEVEL (1)-searches the entry specified by the base parameter and one level
beneath that entry.
LDAP_SCOPE_SUBTREE (2)-searches the entire subtree starting with the entry specified by the
base parameter.
Set to LDAP_SCOPE_DEFAULT (-1) if missing.

lud_filter: Points to the search filter specified in the URL. If NULL is passed, a default filter
("objectclass=*") is used.

lud_exts: Points to a NULL-terminated list of the extensions specified in the URL. NULL if no
extensions are specified.

Iud crit_exts: Specifies whether or not any critical extensions are included. Set to 1 if any critical
extension are included, otherwise set to 0.

See Also

ldap_free urldesc (page 160), Idap_url parse (page 291)

294 NDK: LDAP Libraries for C

Idap_url_search

Uses the specified URL to perform an asynchronous search operation.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap url search (

LDAP *1d,
const char *url,
int attrsonly);
Parameters
1d
(IN) Points to the handle for the LDAP session.
url
(IN) Points to the URL to use in the search operation.
attrsonly

(IN) Specifies whether attribute values are returned with the specified attributes.
¢ (O—return attributes and values

¢]—return only attributes

Return Values

Returns the message ID of the search operation.

Remarks

To check the results of the operation, use the Idap result or the Idap result2error function.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP_OPT_SIZELIMIT options on the LDAP handle. This function has no client time or size
limits.

An LDAP URL has the following format:

ldap[s]://<hostname>:<port>/<base_dn>?<attributes>?<scope>? <filter>?<extensions>

Standard LDAP Functions 295

Idap://
Idaps://
<hostname>

<pon>

<base_dn>

<attributes>

<scope>

<filter>

<extensions>

Specifies a clear-text connection.
Specifies an SSL connection.
Specifies the LDAP server.

Specifies the port number. Defaults to zero if unspecified. Port 0
causes the appropriate port (389 for clear-text and 636 for SSL) to be
selected when the connection is made.

Specifies the distinguished name of an entry in the directory where
the search begins. Defaults to an empty string which starts the search
at the top level of the directory.

Specifies a comma-separated list of attributes to return. If missing, all
attributes are returned.

Specifies the scope of the search:

base—search just base entry
one—search the immediate subordinates of the base entry
sub—search the entire subtree of the base entry

Defaults to base.
Specifies a search filter. If empty, defaults to (objectclass=*).

Specifies a comma-separated list of extension in one of the following
formats:

[Ntype=value
['ltype

Extensions prefixed with "!" are considered critical extensions.

The following examples illustrate this URL format:

¢ ldap://acme.com/ou=sales,0=acme?sn,telephoneNumber?sub?
(objectclass=inetOrgPerson)?extl=valuel ,ext2=value2

¢ ldaps://1.2.3.4:636/0=novell??one

See Also

ldap_free urldesc (page 160), Idap_url search_s (page 297), Idap_url search_st (page 299)

296 NDK: LDAP Libraries for C

Idap_url_search_s

Uses the specified URL to perform a synchronous search operation.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap url search s (

LDAP *1d,
const char *url,
int attrsonly,

LDAPMessage **res);

Parameters

1d
(IN) Points to the handle for the LDAP session.

url

(IN) Points to the URL to use in the search operation.

attrsonly
(IN) Specifies whether attribute values are returned with the specified attributes.
¢ (O—return attributes and values

¢ l—return only attributes

res

(OUT) Returns a pointer to an array of result messages if the search succeeds or NULL if no
results are returned.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
Remarks

To check the results of the operation, use the Idap_result or the Idap _result2error function.

Standard LDAP Functions 297

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP OPT SIZELIMIT options on the LDAP handle. This function has no client time or size
limits.

See Also

ldap_free urldesc (page 160), Idap_url search (page 295), Idap_url search_st (page 299)
LDAPMessage (page 488)

298 NDK: LDAP Libraries for C

Idap_url_search_st

Uses the specified URL to perform a synchronous search operation that includes a specified time
limit.

LDAP Version: v3

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap url search st (

LDAP *1d,
const char *url,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res);
Parameters
1d
(IN) Points to the handle for the LDAP session.
url
(IN) Points to the URL to use in the search operation.
attrsonly
(IN) Specifies whether attribute values are returned with the specified attributes.
¢ (O—return attributes and values
¢ l—return only attributes
timeout
(IN) Points to a timeval structure that specifies the maximum time to wait for the results of a
search to complete. It specifies both the time the server waits for the operation to complete as
well as the time the local function waits for the server to respond. If the timeout parameter is set
to NULL, the client timeout is infinite and the server uses the timeout value stored in the
session handle option, LDAP_OPT_TIMELIMIT (whose default value is no timeout). For
more information about possible values, see timeval (page 503).
res

(OUT) Returns a pointer to an array of result messages if the search succeeds or NULL if no
results are returned.

Standard LDAP Functions 299

Return Values

Returns the message ID of the search operation.

Remarks

To check the results of the operation, use the Idap result or the Idap _result2error function.

Server timeouts and size limits for this function are set using the LDAP_OPT TIMELIMIT and
LDAP OPT_SIZELIMIT options on the LDAP handle. Client timeouts are set using the timeout
parameter. This function has no client size limit.

See Also

ldap free urldesc (page 160), Idap_url search (page 295), Idap_url search_s (page 297)

timeval (page 503), LDAPMessage (page 488)

300 NDK: LDAP Libraries for C

Idap_value_free

Frees the memory allocated for an array of string values.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap value free (

char **yvals) ;
Parameters
vals

(IN) Points to the array of values returned by the ldap _get values function.

Remarks

The memory for each value is freed as well as the array.

If NULL is passed for the vals parameter, this function does nothing.

See Also

ldap_get values (page 170), Idap_count values (page 119), Idap_value free len (page 302)

Standard LDAP Functions 301

Idap_value_free_len

Frees the memory allocated for an array of berval structures.
LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

void ldap value free len (
struct berval **vals) ;

Parameters

vals

(IN) Points to the array of values returned by the ldap _get values len function.

Remarks

The memory for each berval structure is freed as well as the array.

If NULL is passed for the vals parameter, this function does nothing.

See Also

ldap_get values_len (page 172), Idap count values_len (page 120), ldap value free (page 301)

302 NDK: LDAP Libraries for C

Idapssl_client_init

Initializes the SSL (Secure Socket Layer) library.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>
int ldapssl client init (

const char *certFile,
void *reserved) ;

Parameters

certFile

(IN) Points to the trusted root certificate file, a fully-qualified file path and the file must contain
a DER encoded certificate.

reserved

(IN) Not currently used. Pass a NULL.

Return Values

0 Success
-1 Failure
Remarks

The LDAP SSL library provides SSL server authentication. In order to verify the server, the library
needs to be configured with a trusted root certificate.

The certFile parameter is the fully qualified path of a file containing a trusted root certificate DER
encoded.

It is also possible to pass NULL in the certFile parameter and use ldapssl add_trusted cert to add
trusted root certificates to the LDAP SSL library. The API ldapssl_add trusted cert accepts DER
and B64 (PEM) encoded certificates.

Standard LDAP Functions 303

If the SSL handshake fails, the LDAP library returns an LDAP_SERVER DOWN error. The
handshake can fail because the server is down or because SSL has not been set up correctly on the
client or LDAP server.

When you are finished with the SSL library, you should call the l1dapssl_client deinit function.

For sample code, see sslbind.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

See Also

ldapssl_client_deinit (page 305), Idapssl_init (page 306), Idapssl_install routines (page 164)

304 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_client_deinit

Deinitializes the SSL library.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl client deinit (
void) ;

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. See “LDAP Return Codes”.
Remarks

This function must be called after you are finished using the SSL library. Before calling this
function, all SSL LDAP session handles must be closed using the 1dap unbind function.

For sample code, see sslbind.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldap unbind, Idap unbind s (page 287), 1dapssl_client init (page 303)

Standard LDAP Functions 305

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_init

Creates an LDAP session handle that is SSL enabled.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

LDAP * ldapssl init (
const char *host,

int port,
int secure) ;
Parameters
host

(IN) Contains the names of the available hosts, each separated by a space, or a list of [P
addresses (in dot format) of the hosts, each separated by a space. If a port number is included
with the name or the address, it is separated from them with a colon (:).

port

(IN) Contains the TCP port number to connect to, which for an SSL connection is the SSL port
number of the LDAP server. If a port number is included with the host parameter, this
parameter is ignored.

secure
(IN) Specifies whether the connection is established over SSL.

¢ Zero—do not establish the connection over SSL (which makes this function essentially
the same as the 1dap_init function)

+ Non-zero—establish the connection over SSL

Return Values

>0 Success; session handle

NULL Unsuccessful

306 NDK: LDAP Libraries for C

Remarks

If you connect to an LDAP v2 server, you must call an LDAP bind operation before performing any
operations. If you connect to an LDAP v3 server, some operations can be performed before calling a
bind operation.

Before calling this function, you must first call the Idapssl client init function which initializes the
SSL library.

Calling the ldapssl_init function is equivalent to calling the 1dap_init function followed by the
ldapssl_install_routines function.

The Idapssl_init function does not actually communicate with the LDAP server. Communication
begins when the application binds or does some other operation.

The LDAP libraries first contact the first server listed in the host parameter. If they are unable to
communicate with that server, they try the next server and then the next.

The session handle returned contains opaque data identifying the session. To get or set handle
information, use Idap_set option and ldap_get option. For a list of the handle options, see
Section 6.10, “Session Preference Options,” on page 425.

For sample code, see sslbind.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

IMPORTANT: The Idap _init function allocates memory for the LDAP structure. This memory
must be freed by calling ldap _unbind or ldap unbind_s even when an LDAP bind function is not
called or the LDAP bind function fails.

See Also

ldapssl_client _init (page 303), Idap_init (page 177)

Standard LDAP Functions 307

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_add_trusted cert

Adds certificates to the list of trusted certificates.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl add trusted cert (
void *cert,

int type) ;
Parameters
cert

(IN) Points to the trusted root certificate to add.

type
(IN) Certificate type. This must be one of the following values:
+ LDAPSSL CERT FILETYPE B64
+ LDAPSSL CERT FILETYPE DER
+ LDAPSSL CERT BUFFTYPE B64
+ LDAPSSL _CERT BUFFTYPE DER

Return Values

0 Success
-1 Failure
Remarks

This function can be called repeatedly to build a group of trusted certificates. It supports certificates
encoded as DER and B64 (PEM) formats.

When one of the "FILETYPE" types is specified (see the type parameter), the cert parameter must
be a pointer to a character array containing the fully qualified filename of the file containing the
certificate. When one of the "BUFFTYPE" types are specified, the cert parameter must be a pointer
an LDAPSSL_Cert (page 496) structure.

308 NDK: LDAP Libraries for C

For sample code, see sslbind.c, sslbind_interactive.c (http://developer.novell.com/ndk/doc/
samplecode/cldap sample/index.htm).

See Also

ldapssl_client init (page 303), Idapssl_client_deinit (page 305), Idapssl_init (page 306),
ldapssl_install routines (page 164)

Standard LDAP Functions 309

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_get_cert

Returns a certificate encoded in the requested format.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl get cert (
void *certHandle,
int type,
LDAPSSL Cert *cert) ;

Parameters

certHandle
(IN) certificate handle received by a verify callback function.
type
(IN) Desired certificate encoding. This must be one of the following values:
+ LDAPSSL CERT BUFFTYPE B64
¢+ LDAPSSL CERT BUFFTYPE DER

cert
(I/0) Pointer to an LDAPSSL_Cert (page 496) structure.

Return Values

0 Success
-1 Failure
Remarks

Applications use ldapssl_get cert to retrieve the certificate from the certificate handle passed to the
Idapssl_set verify callback (page 320) function.

The certHandle parameter is the certificate handle (void *) received by the verify callback routine.

310 NDK: LDAP Libraries for C

An LDAPSSL Cert (page 496) structure contains two elements, length and data. The data element
is a pointer to a buffer allocated by the application and length is the size of the buffer. To determine
the correct size for the buffer, applications can pass in an LDAPSSL _Cert structure with the data
element set to NULL and the length element will be updated with the appropriate size. The
appropriate memory can then be allocated and ldapssl_get cert can be called again with the
LDAPSSL_Cert data element set to the allocated memory.

Applications can use Idapssl_get_cert to retrieve the certificate information as a buffer and use it a
desired. One possibility is to add it to the list of trusted certificates using Idapss! add trusted cert
(page 308). After adding the certificate to the list of trusted certificates, the verify callback routine
will no longer be called if the certificate is received when establishing future SSL connections.

For sample code, see sslbind_interactive.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

See Also

ldapssl_set verify callback (page 320), ldapssl add_trusted cert (page 308)

Standard LDAP Functions 311

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_get_cert_attribute

Returns requested certificate information.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl get cert attribute (

void *certHandle,
unsigned long attrID,
void *value,
int *length) ;
Parameters
certHandle

(IN) Certificate handle received by a verify callback function.

attrID
(IN) Certificate information to return. See Table 6-3 on page 420.

value

(OUT) Pointer to memory appropriate for the information requested.

length

(I/O) Pointer to length of value parameter memory.

Return Values

0 Success
-1 Failure
Remarks

This function is used to query information about a server certificate received by the verify callback
routine.

The certHandle parameter is the certificate handle (void *) received by the verify callback routine.

312 NDK: LDAP Libraries for C

The attrID parameter specifies the information to retrieve, and the value parameter points to memory
appropriate for the information. For specific attrID(s) and data types see Table 6-3 on page 420.

The length parameter is both an input and an output. On input, length is the size of the memory
pointed to by the value parameter. On output, length is updated to reflect the actual size of the
information copied.

In order to allocate memory, applications can pass in a NULL for the value parameter and the length
parameter will be updated with the appropriate size, but no data will be copied. Applications can
then allocate the appropriate memory and call 1dapssl_get cert_attribute again to retrieve the
information.

For sample code, see sslbind_interactive.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

See Also

ldapssl_set verify callback (page 320)

Standard LDAP Functions 313

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_set_verify_mode

Sets the server certificate verification mode used when establishing an SSL connection.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl set verify mode (
int mode);

Parameters

mode
(IN) Server certificate verify mode. This must be set to the following value:

¢+ LDAPSSL_VERIFY_SERVER

Return Values

0 Success
-1 Failure
Remarks

The default mode is server verification (LDAPSSL_VERIFY_ SERVER).

See Also

ldapssl_get verify mode (page 319)

314 NDK: LDAP Libraries for C

Idapssl_set_client_cert

Specifies the client certificate to be used with client-based certificate authentication (CBCA).
LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl set client cert (
void *cert,
int type
void *password) ;

Parameters

cert

(IN) Points to the encoded client certificate file.

type

(IN) Certificate type. This must be one of the following values:
LDAPSSL CERT FILETYPE B64
LDAPSSL CERT FILETYPE DER
LDAPSSL _CERT BUFFTYPE B64
LDAPSSL _CERT BUFFTYPE DER

*

*

*

*

password

(IN) Points to the client certificate password.

Return Values

0 Success
-1 Failure
Remarks

For sample code, see mutual.c, (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Standard LDAP Functions 315

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

See Also

ldapssl_set client_private key (page 317)

316 NDK: LDAP Libraries for C

Idapssl_set_client_private key

Specifies the private key to be used with client-based certificate authentication (CBCA).
LDAP Version: v3

Library: *ldapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl set client private key (
void *key,
int type
void *password) ;

Parameters

key
(IN) Points to the encoded client private key file.

type

(IN) Key type. This must be one of the following values:
LDAPSSL CERT FILETYPE B64
LDAPSSL CERT FILETYPE DER
LDAPSSL _CERT BUFFTYPE B64
LDAPSSL _CERT BUFFTYPE DER

*

*

*

*

password

(IN) Points to the client private key password.

Return Values

0 Success
-1 Failure
Remarks

For sample code, see mutual.c, (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Standard LDAP Functions 317

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

See Also

Idapssl_set client cert (page 315)

318 NDK: LDAP Libraries for C

Idapssl_get_verify_mode

Returns the current server certificate verification mode that is used when establishing an SSL
connection.

LDAP Version: v3

Library: *Idapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl get verify mode (
int *mode);

Parameters

mode
(OUT) Current server certificate verify mode. This will be the following value:
¢+ LDAPSSL VERIFY SERVER

Return Values

0 Success
-1 Failure
Remarks

The default mode is server verification (LDAPSSL VERIFY SERVER).

See Also

ldapssl set verify mode (page 314)

Standard LDAP Functions 319

Idapssl_set_verify callback

Sets the routine to be called during SSL connection establishment if the server certificate received is
not trusted.

LDAP Version: v3

Library: *Idapssl.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl set verify callback (
int (LIBCALL *certVerifyFunc) (void*));

Parameters

certVerifyFunc

(IN) Callback routine, called during SSL connection establishment if the server certificate
received is not trusted.

Return Values

0 Success
-1 Failure
Remarks

The certVerifyFunc must be a pointer to a function that takes one parameter (a void *) and returns an
int.

If an untrusted server certificate is received while establishing an SSL connection, the callback
routine is called with a handle to the certificate (void*).

This handle can be passed into Idapssl get cert attribute (page 312) to query specific certificate
information.

In order to accept the server certificate and continue the SSL connection, the callback routine should
return LDAPSSL. CERT ACCEPT. To reject the server certificate and abort the connection the
callback routine should return LDAPSSL. CERT REJECT.

For sample code, see sslbind_interactive.c (http://developer.novell.com/ndk/doc/samplecode/
cldap_sample/index.htm).

320 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

See Also

ldapssl_get cert_attribute (page 312), Idapssl_get cert (page 310)

Standard LDAP Functions 321

Idapssl|_start_tls

Starts Transport Layer Security (TLS/SSL). Works with eDirectory 8.7 or higher.

LDAP Version: v3

Library: *ldapssl.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl start tls (
LDAP *1d);

Parameters

1d
(IN) LDAP session handle.

Return Values

0 Success

-1 Failure

Remarks

For sample code, see starttls.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldapssl stop tls (page 323)

322 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idapssl_stop_tls

Stops Transport Layer Security (TLS/SSL). Works with eDirectory 8.7 or higher.
LDAP Version: v3

Library: *ldapssl.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap ssl.h>

int ldapssl stop tls (
LDAP *1d);

Parameters

1d
(IN) LDAP session handle.

Return Values

0 Success
-1 Failure
Remarks

For sample code, see starttls.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

See Also

ldapssl_start tls (page 322)

Standard LDAP Functions 323

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

324 NDK: LDAP Libraries for C

LDAP Extension Functions

This chapter describes the Novell LDAP extensions for naming contexts and replicas. These
extensions allow access to the following directory features:

+ Naming contexts: split, join, get number of entries, abort operation

¢ Replicas: add, remove, change type, list on server, return information

+ Replica synchronization: to a specified server, to all replicas, at a specified time

¢ Schema synchronization

+ Get effective eDirectory rights for attributes

¢ Get DN of logged in caller

¢ Restart the LDAP server

+ Event monitoring
All of the naming context and replica functions are synchronous functions. If the naming context or
replica is in a state that makes the requested operation possible, eDirectory responds to the client
with a successful completion code. eDirectory then completes the operation in the background since

some operations on large trees can take hours to complete. Clients can check on the status of the
operation by calling the 1dap_get replica_info function.

All of these functions require LDAP extensions on the LDAP server.

NOTE: LDAP distinguished names are UTF-8 encoded.

Renamed Functions The "naming context" terminology is now obsolete. The following functions
have been renamed to replace "naming context" terminology with "partition":

¢ ldap create naming_context, renamed to Idap split partition.

¢ ldap merge naming_contexts, renamed to Idap merge partitions.

¢ ldap naming context_entry count, renamed to Idap partition entry count.

¢ ldap request naming_ context_sync, renamed to Idap request partition_sync.

¢ ldap abort naming context operation, renamed to Idap abort partition operation.

¢ ldap get context identity name, renamed to Idap get bind dn.

¢ ldap create orphan_naming_context, renamed to ldap split orphan partition.

¢ ldap remove orphan naming context, renamed to ldap remove orphan partition.

LDAP Extension Functions

325

Idap_abort_partition_operation

Aborts the last partition operation on the specified partition.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap abort partition operation (
LDAP *1d,
char *dn,
int flags);

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name, in LDAP format, of partition whose current operation
should be aborted.

flags
(IN) Set to zero. Not currently used.

Return Values

0x00 LDAP_SUCCESS or no partition operation is pending.

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

326 NDK: LDAP Libraries for C

Remarks

In eDirectory, partition operations include

+ Adding, changing, and removing replicas

+ Joining and splitting partitions

At any given time, only one partition operation is pending. If a partition operation is not pending
when this function is called, the function returns LDAP_SUCCESS.

For sample code, see abortpo.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.29) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.30) and there is no responseValue.

ResponseBer
NULL

See Also

ldap_add replica (page 328)

ldap _change replica_type (page 332)
ldap create partition (page 334)
ldap_merge partitions (page 354)
ldap remove replica (page 380)

LDAP Extension Functions 327

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_add_replica

Adds a replica to the specified directory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap_add replica (

LDAP *1d,
char *dn,
char *serverDN,
LDAP_REPLICA TYPE replicaType,
int flags);
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name, in LDAP format, of the replica's partition root.
serverDN
(IN) Points to the distinguished name, in LDAP format, of the server on which a new replica is
to be added.
replicaType
(IN) Specifies the type of replica to add (see Section 6.7, “Replica Types,” on page 423).
flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When
set to zero, the status of the servers is not checked. When set to
LDAP _ENSURE _SERVERS UP, all the servers must be up for the operation to proceed.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

328 NDK: LDAP Libraries for C

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

This operation is performed on the server with the master replica of the replica that is being added.
The caller must have supervisor rights to the master replica.
For sample code, see addrepl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.7) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
replicaType INTEGER
serverName LDAPDN
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.8) and there is no responseValue.

ResponseBer
NULL

See Also

ldap change replica_type (page 332)
ldap_remove replica (page 380)
ldap_abort_partition_operation (page 326)

LDAP Extension Functions 329

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_backup_object

Backs up the attribute names and values for an object.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.8 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

ldap backup object (
LDAP *1d,
const char *dn,
const char *passwd,
char **objectState,
char **objectInfo,
char **chunckSize,
int *size);

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the object for which information is to be returned.

passwd

(IN) Points to the password for encryption and decryption, when any one of the attributes in the
user object has been encrypted. If the password is supplied then the connection to the servers
will be over TLS.

objectState
(IN/OUT)

objectInfo

(OUT) Points to the requested attribute names and values.

chunckSize
(OUT) Specifies the length of each chunk.

size

(OUT) Specifies the length of the information to be returned.

330 NDK: LDAP Libraries for C

Return Values

Points to the distinguished name of the entry that is authenticating.

LDAP_PARAM_ERROR
LDAP_NO MEMORY
LDAP_ENCODING_ERROR
LDAP_DECODING_ERROR
LDAP NOT SUPPORTED
LDAP_OPERATIONS_ERROR
LDAP_SUCCESS

See Also

ldap_restore object (page 386)

LDAP Extension Functions 331

Idap_change_replica_type

Changes the type of the specified replica on the specified directory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap change replica type (

LDAP *1d,
char *dn,
char *serverDN,
LDAP_REPLICA TYPE replicaType,
int sflags);
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name, in LDAP format, of the replica's partition root.
serverDN
(IN) Points to the distinguished name, in LDAP format, of the server on which the replica
resides.
replicaType
(IN) Specifies the new type for the replica (see Section 6.7, “Replica Types,” on page 423).
flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When
set to zero, the status of the servers is not checked. When set to
LDAP _ENSURE _SERVERS UP, all the servers must be up for the operation to proceed.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

332 NDK: LDAP Libraries for C

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

This operation is performed on the server with the master replica of the replica that is being
changed.

The replica type of the master replica cannot be changed by directly calling this function. The
master's replica type can only be changed as a side effect of using this function to change another
replica to the master replica. When this happens, the old master automatically becomes a secondary
replica.

The caller must have supervisor rights to the master replica.
For sample code, see chgrepl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.15) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
replicaType INTEGER
serverName LDAPDN
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.16) and there is no responseValue.

ResponseBer
NULL

See Also

ldap _add replica (page 328)
ldap remove replica (page 380)
ldap_abort_partition_operation (page 326)

LDAP Extension Functions 333

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_create_ partition

Creates a new LDAP partition.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX
Syntax
#include <ldapx.h>
int ldap create partition (
LDAP *1d,
char *dn,
int flags);

Parameters

Id

(IN) Points to the handle for the LDAP session.

dn

(IN) Specifies the distinguished name, in LDAP format, of the child container where the new
partition is created.

flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When
set to zero, the status of the servers is not checked. When set to
LDAP_ENSURE SERVERS UP, all the servers must be up for the operation to proceed.

Return Valu

es

0x00
0x01

0x53
0x5A
0x5C

Non-zero

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

Non-zero values indicate errors. See “LDAP Return Codes”.

334 NDK: LDAP Libraries for C

Remarks

In eDirectory terminology, creating a partition splits a partition into a parent partition and a child
partition at the child container specified in the call.

This operation is performed on the server with the master replica of the parent replica. The server
with the parent's master replica must be running or this operation fails.

The caller must have supervisor rights to the parent's master replica.
For sample code, see splitpart.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.3) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.4) and there is no responseValue.

ResponseBer
NULL

See Also

ldap_merge partitions (page 354)
ldap abort_partition_operation (page 326)

LDAP Extension Functions 335

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_create orphan_partition

Creates an orphan partition on the specified server.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap create orphan partition (
LDAP *1d,
char *serverDN,
char *contextName) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

serverDN
(IN) Points to the distinguished name, in LDAP format, of the server that will hold the orphan
naming context.

contextName

(IN) Points to the distinguished name for the partition (naming context), for example, "dc=test,
dc=germany, dc=provo, dc=novell, dc=com, t=dns".

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.39) and the requestValue is a BER
encoding of the following:

336 NDK: LDAP Libraries for C

RequestBer
serverDN LDAPDN
contextName LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.40) and there is no responseValue.

ResponseBer
NULL

See Also

ldap _create partition (page 334)
ldap abort partition_operation (page 326)

LDAP Extension Functions 337

Idap_event_free

Frees data allocated by the 1dap event functions.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap event free (

void *eventData) ;
Parameters
eventData

(IN) Pointer to event data allocated by Idap parse monitor events_response (page 366),
Idap parse ds_event (page 360), or a pointer to an array of NDSEventSpecifiers.

Return Values

LDAP_SUCCESS Request was successfully sent
[Other value] Non-zero codes indicate errors. See “LDAP Return Codes” for information.
See Also

ldap monitor events (page 356), Idap parse ds_event (page 360),
ldap _parse_monitor_events_response (page 366)

338 NDK: LDAP Libraries for C

Idap_get_bind_dn

Returns the distinguished name of the client associated with the LDAP connection.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>
int ldap_get bind dn (

LDAP *1d,
char **identity) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

identity
(OUT) Points to the distinguished name, in LDAP format, of the client.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

Remarks

If the connection is not authenticated and is using an anonymus bind, the function returns an empty
string.

The function allocates the memory for the identity parameter, and the caller is responsible for
freeing it with the ldapx_memfree function.

LDAP Extension Functions 339

The first field in the structure contains the length of the name, and the second field contains the
name.

For sample code, see getidname.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.31) and the requestValue has no
value.

RequestBer
NULL

The responseName is set to the OID (2.16.840.1.113719.1.27.100.32) and the responseValue is a
BER encoding of the following:

ResponseBer
identity OCTET STRING

340 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_get_effective_privileges

Returns the effective rights of the specified entry to the specified attribute.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap get effective privileges (
LDAP *1d,
char *dn,
char *trusteeDN,
char *attrName,

int *privileges);
Parameters
1d
(IN) Points to the handle for the LDAP session.
dn
(IN) Points to the distinguished name, in LDAP format, of the entry that contains the attribute
in question.
trusteeDN
(IN) Points to the distinguished name, in LDAP format, of the trustee whose rights are being
returned, or you can specify [Public] or [Self].
attrName
(IN) Points to attribute whose rights are being returned or you can specify [Entry Rights] or
[AIl Attribute Rights].
privileges

(OUT) Points to bitmask of the trustee's effective rights (see Section 6.1, “Object Access
Control Rights,” on page 419 and Section 6.2, “Attribute Access Control Rights,” on
page 419).

Return Values

0x00 LDAP_SUCCESS

LDAP Extension Functions 341

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

To understand the difference between the dn and the trusteeDN arguments, suppose that an entry
named Kim has a telephone number attribute, and a client named Tom wants to know if he has rights
to the attribue. In this case,

¢ dn points to the distinguished name of Kim

+ trusteeDN points to the distinguished name of Tom

¢ attrName points to Telephone Number

¢ privileges points to the rights Tom has to Kim's Telephone Number attribute

For sample code, see getpriv.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.33) and the requestValue is a BER
encoding of the following:

RequestBer
dn LDAPDN
trusteeDN LDAPDN
attrName OCTET STRING

The responseName is set to the OID (2.16.840.1.113719.1.27.100.34) and the response Value is a
BER encoding of the following:

ResponseBer
privileges INTEGER

342 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_get_replication_filter

Gets the replication filter defined for an eDirectory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5, SP1

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap get replication filter (
LDAP *1d,
char *serverDN,
char **filter);

Parameters
1d
(IN) Points to the handle for the LDAP session.

serverDN
(IN) Points to the distinguished name of the server from which to read the replication filter.

filter

(OUT) Points to the address of the filter. For the format, see Section 6.6, “Replication Filters,”
on page 423. The returned filter must be freed by calling the Idapx_memfree function.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

LDAP Extension Functions 343

Remarks

An eDirectory server can only have one replication filter, and that filter is used for all filtered
replicas on the server.

NDS eDirectory 8.5 and above supports filtered replicas. The extension to get and set the replication
filter is not available until NDS 8.5 SP1.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.37) and the requestValue is a BER
encoding of the following:

RequestBer
serverName LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.38) and the responseValue is a
BER encoding of the following:

ResponseBer
SEQUENCE of SEQUENCE ({
classname OCTET STRING

SEQUENCE of ATTRIBUTES
}

where
ATTRIBUTES:: OCTET STRING

See Also

ldap set replication_filter (page 390)

344 NDK: LDAP Libraries for C

Idap_get_replica_info

Returns information about the specified replica on the specified directory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap get replica info (

LDAP *1d,
char *dn,
char *serverDN,

struct LDAPReplicalnfo *partitionInfo) ;

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name, in LDAP format, of the replica from which information
is being requested.

serverDN

(IN) Points to the distinguished name, in LDAP format, of the server containing the replica.

partitionInfo

(OUT) Points to a LDAPReplicalnfo (page 491) structure that returns with the replica
information.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

LDAP Extension Functions 345

Remarks

The specified server holding the replica must be running or an error is returned.

For sample code, see getrinfo.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.17) and the requestValue is a BER
encoding of the following:

RequestBer
serverName LDAPDN
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.18) and the responseValue is a
BER encoding of the following:

ResponseBer
partitionID INTEGER
replicaState INTEGER
modificationTime INTEGER
purgeTime INTEGER
localPartitionID INTEGER
partitionDN LDAPDN
replicaType INTEGER
flags INTEGER

See Also

ldap_list_replicas (page 352)

346 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_Iburp_end_request

Sends an LBURP end request extended operation to the server.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UXNLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit),
Linux (32-bit and 64-bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>ldap lburp end request (LDAP *1d, int
sequenceNumber, int *msglID);

Parameters

1d

(IN) Points to the handle for the LDAP session.

sequenceNumber

(IN) Points to the sequence number used to specify the ordering of the LBURP operation. The
value in sequence number is one greater than the last LBURP operation sequence number in the
LBURP operation stream. It allows the server to know when it has received all outstanding
asynchronous LBURP operations.

msgidp
(OUT) Points to the message ID of the request when the add request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see LDAP Return Codes.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

To obtain the results of the operation, call the ldap_result function with the returned message ID.

See Also

ldap parse lburp end response (page 362)

LDAP Extension Functions

347

Idap_Iburp_operation_request

Sends an LBURP operation request extended operation to the server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>int ldap lburp operation request (LDAP *1d,
int sequenceNumber, LBURPUpdateOperationList **updatelist,
int *msgID)

Parameters

1d
(IN) Points to the handle for the LDAP session.

sequenceNumber

(IN) Points to the sequenceNumber used to specify the ordering of the LBURP operation.

updateList

(IN) Points to an array of LDAPMod structures along with package ID, that contain the
attributes and values to add/delete/modify/modify rdn entries.

msgidp
(OUT) Points to the message ID of the request when the add request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see LDAP Return Codes.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

The sequence number is used to specify the ordering of LBURP operation requests. This enables the
client to know the order in which the LBURP operation requests must be processed even if it
receives them in a sequence different from that in which they were sent from the client. The cilent
must set the value of sequence number of the first LBURP operation to 1, and must increment the
value of sequence number for each succeeding LBURP operation.

348 NDK: LDAP Libraries for C

To obtain the results of the operation, call the ldap_result function with the returned message ID.

See Also

ldap Iburp parse operation response (page 350)

LDAP Extension Functions 349

Idap_Iburp parse_operation_response

Parses LBURP operation response data when the result code is LDAP RES EXTENDED.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>int ldap parse lburp operation response (LDAP *1d,
LDAPMessage *lburpMessage, int *resultCode, char **errorMsg,

int *failedOperationCount, LBURPUpdateResult **failedOperations, int
freelt);

Parameters

1d
(IN) Points to the handle for the LDAP session.

IburpOperationMessage
(IN) Pointer to the LDAPMessage returned by ldap_result.

resultCode

(OUT) Returns the responseCode from the server.

errorMessage

(OUT) Returns the error message from the server, may be NULL if no error messages are
requested. This memory must be freed using ldap_memftree.

failedOperationCount

(OUT) Returns the number of failed operations from the server, may be NULL if no data is
requested. This memory must be freed using ldapx _memfree.

failedOperations

(OUT) a pointer to a pointer to a structure containing the data returned by this particular
LBURP operation.

The structure is allocated by this function. If the LUBRP operation is success, does not have
associated data the pointer will be set to NULL. When the application no longer needs the data
it should free the data by calling the ldapx_memfree function.

failedOperations

(IN) If non-zero, the function will free the memory referenced by the lburpMessage parameter.

350 NDK: LDAP Libraries for C

Idap_Iburp_start_request

Sends an LBURP start request extended operation to the server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>int ldap lburp start request (LDAP *1d,
int “*msgId);

Parameters

1d
(IN) Points to the handle for the LDAP session.

msgidp
(OUT) Points to the message ID of the request when the add request succeeds.

Return Values

0x00 LDAP_SUCCESS

Non-zero Failure. For a complete list, see LDAP Return Codes.
0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

Remarks

To obtain the results of the operation, call the ldap_result function with the returned message ID.

See Also

ldap_parse lburp start response (page 364)

LDAP Extension Functions

351

Idap_list_replicas

Lists all the replicas on the specified directory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap list replicas (
LDAP *1d,
char *serverDN,
char ***replicalist);

Parameters

1d
(IN) Points to the handle for the LDAP session.

serverDN

(IN) Points to the distinguished name, in LDAP format, of the server whose replicas are being
listed.

replicaList

(OUT) Points to a list of replicas.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

352 NDK: LDAP Libraries for C

Remarks

The function allocates the memory for replicaList, but the caller is responsible for freeing the
memory with the ldapx_memfree function.

This function returns all replicas including subordinate references. The replicalist agrument points
to a null terminated array of strings. Each string in the array contains the distinguished name of a
replica's partition root.

For sample code, see listrepl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.19) and the requestValue is a BER
encoding of the following:

RequestBer
serverDN LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.20) and the responseValue is a
BER encoding of the following:

ResponseBer
replicalist SEQUENCE OF OCTET STRINGS

See Also

ldap_get replica info (page 345)

LDAP Extension Functions 353

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_merge_partitions

Joins a parent and

child partition.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx

and HP-UX

.h>

int ldap merge partitions (

LDAP *1d,
char *dn,
int flag

Parameters

Id

s);

(IN) Points to the handle for the LDAP session.

dn

(IN) Specifies the distinguished name, in LDAP format, of the child partition's root that is to be
joined to its parent.

flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When
set to zero, the status of the servers is not checked. When set to
LDAP_ENSURE SERVERS UP, all the servers must be up for the operation to proceed.

Return Valu

es

0x00
0x01

0x53
0x5A
0x5C

Non-zero

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

Non-zero values indicate errors. See “LDAP Return Codes”.

354 NDK: LDAP Libraries for C

Remarks

This operation is performed on the server containing the master replica of the parent partition. The
caller must have supervisor rights to the child's master replica and the parent's master replica.

For sample code, see joinpart.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.5) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.6) and the requestValue has no
value.

ResponseBer
NULL

See Also

ldap _create partition (page 334)
ldap abort partition_operation (page 326)

LDAP Extension Functions 355

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_monitor_events

Sends an EventMonitorRequest extended operation to the server. Event monitoring works with
eDirectory 8.7 or higher.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap monitor events (

LDAP *1d,
int eventCount,
EVT EventSpecifier[] *events,
int *msgld) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
eventCount
(IN) The number of events you wish to monitor.
events
(IN) An array of EVT EventSpecifier structures describing the events the application wishes to
monitor. The number of events is specified by eventCount.
msgld

(OUT) Set to the message id of the request if the Idap_monitor_event call succeeds. The value
is undefined if the function returns a value other than LDAP_SUCCESS.

Return Values

LDAP_SUCCESS Request was successfully sent

[Other value] Non-zero codes indicate errors. See “LDAP Return Codes” for information.

356 NDK: LDAP Libraries for C

Remarks

The Idap _monitor events function sends a MonitorEventRequest extended operation to the server.
The function sends the request asynchronously; it does not wait for a response from the server.

To include a filter with your request to limit the events returned see Idap _monitor events_filtered
(page 358).

See Also

ldap parse ds_event (page 360), ldap parse_monitor_events response (page 366), ldap _event free
(page 338), Idap_monitor_events_filtered (page 358)

LDAP Extension Functions 357

Idap_monitor_events_filtered

Sends a filtered EventMonitorRequest extended operation to the server. Event monitoring works
with eDirectory 8.7 or higher.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap monitor events filtered (

LDAP *1d,
int eventCount,
EVT FilteredEventSpecifier[] *events,
int *msgld) ;
Parameters
1d
(IN) Points to the handle for the LDAP session.
eventCount
(IN) The number of events you wish to monitor.
events
(IN) An array of EVT FilteredEventSpecifier structures describing the events the application
wishes to monitor including an event filter. The number of events is specified by eventCount.
msgld

(OUT) Set to the message id of the request if the Idap_monitor_event call succeeds. The value
is undefined if the function returns a value other than LDAP_SUCCESS.

Return Values

LDAP_SUCCESS Request was successfully sent

[Other value] Non-zero codes indicate errors. See “LDAP Return Codes” for information.

358 NDK: LDAP Libraries for C

Remarks

The Idap _monitor events_filtered function sends a FilteredMonitorEventRequest extended
operation to the server. The function sends the request asynchronously; it does not wait for a
response from the server.

See Also

ldap parse ds_event (page 360), ldap _parse_monitor_events_response (page 366), ldap _event free
(page 338), Idap_monitor_events (page 356)

LDAP Extension Functions 359

Idap_parse_ds_event

Parses event data when the ldap result code is LDAP_RES EXTENDED. This result code Indicates
that an error or exceptional situation occured and events will not be monitored. Event monitoring
works with eDirectory 8.7 or higher.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse ds event (

LDAP *1d,
LDAPMessage *eventMessage,
int *eventType,
int *eventResult,
void **eventData,
int freelt);
Parameters
1d
(IN) Points to the handle for the LDAP session.
eventMessage
(IN) Pointer to the LDAPMessage returned by Idap result (page 239).
eventType
(OUT) Recieves the type of the event.
eventResult
(OUT) Recieves the result associated with the event.
eventData
(OUT) a pointer to a pointer to a structure containing the data returned by this particular event.
The structure is allocated by this function. The type of the structure is determined by the
eventType. If the event does not have associated data the pointer will be set to NULL. When
the application no longer needs the data it should free the data by calling the Idap event free
(page 338) function.
freelt

(IN) If non-zero, the function will free the memory referenced by the eventMessage parameter.

360 NDK: LDAP Libraries for C

Return Values

LDAP_SUCCESS Request was successfully sent
[Other value] Non-zero codes indicate errors. See “LDAP Return Codes” for information.
See Also

ldap_monitor_events (page 356), Idap_parse_monitor_events_response (page 366), ldap _event_free
(page 338)

LDAP Extension Functions 361

Idap_parse_lburp_end_response

Parses LBURP end response data when the result code is LDAP RES EXTENDED.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax
#include <ldapx.h>int ldap parse lburp end response (LDAP *1d,
LDAPMessage *lburpEndMessage, int *resultCode, char **errorMsg,

int freelt)

Parameters

1d
(IN) Points to the handle for the LDAP session.

IburpEndMessage
(IN) Pointer to the LDAPMessage returned by ldap result (page 239).

resultCode

(OUT) Returns the responseCode from the server.

errorMessage

(OUT) Returns the error message from the server, may be NULL if no error messages are
requested. This memory must be freed using ldap memfree (page 181).

badEventsCount

(OUT) Returns the number of bad events from the server, may be NULL if no data is requested.
This memory must be freed using Idapx_memfree (page 398).

freelt

(IN) If non-zero, the function will free the memory referenced by the lburpEndMessage
parameter.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”
0x53 LDAP_ENCODING_ERROR

362 NDK: LDAP Libraries for C

O0x5A LDAP_NO_MEMORY

Remarks

To obtain the results of the operation, call the ldap_result function with the returned message ID.

See Also

ldap _Iburp_end request (page 347)

LDAP Extension Functions 363

Idap_parse_lburp_start_response

Parses LBURP start response data when the result code is LDAP RES EXTENDED.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>int ldap parse lburp start response(LDAP *1d,
LDAPMessage *lburpStartMessage, int *resultCode, char
**errorMsg, int *transactionSize, int freelt

)

Parameters

1d

(IN) Points to the handle for the LDAP session.

IburpStartMessage
(IN) Pointer to the LDAPMessage returned by ldap result (page 239).

resultCode

(OUT) Returns the responseCode from the server.

errorMessage

(OUT) Returns the error message from the server, may be NULL if no error messages are
requested. This memory must be freed using ldap memfree (page 181).

transactionSize

(OUT) Returns the LBURP transaction size.

freelt

(IN) If non-zero, the function will free the memory referenced by the lburpStartMessage
parameter.

Return Values

0x00 LDAP_SUCCESS
Non-zero Failure. For a complete list, see “LDAP Return Codes”.
0x53 LDAP_ENCODING_ERROR

364 NDK: LDAP Libraries for C

O0x5A LDAP_NO_MEMORY

Remarks

The transactionSize is a hint sent by the server to tell the client the number of update operations per
UpdateOperation that it would like the client to send. The client must not send more update
operations in a single Update Operation than the value in transactionSize.

See Also

ldap Iburp_start request (page 351)

LDAP Extension Functions 365

Idap_parse_monitor_events_response

Parses event data when the result code is LDAP_RES INTERMEDIATE. This result code indicates
that an event has occured. Event monitoring works with eDirectory 8.7 or higher.

LDAP Version: v2 or higher

Library: *ldapsdk.*

NDS Version: 8.7 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap.h>

int ldap parse monitor events response (

LDAP *1d,
LDAPMessage *eventMessage,
int *resultCode,
char **errorMessage,
int *badEventsCount,
EVT EventSpecifier **badEvents,
int freelt);
Parameters
1d
(IN) Points to the handle for the LDAP session.
eventMessage
(IN) Pointer to the LDAPMessage returned by ldap result (page 239).
resultCode
(OUT) Returns the responseCode from the server.
errorMessage
(OUT) Returns the error message from the server, may be NULL if no error messages are
requested. This memory must be freed using ldap memfree (page 181).
badEventsCount
(OUT) Returns the number of bad events from the server, may be NULL if no data is requested.
This memory must be freed using ldapx_memfree (page 398).
badEvents

(OUT) If the value of responseCode is LDAP_ PROTOCOL_ERROR, this parameter receives
an array of EVT EventSpecifier structures identifying the unrecognized events (free with
ldap event free (page 338)). Otherwise, the parameter is set to NULL.

366 NDK: LDAP Libraries for C

freelt

(IN) If non-zero, the function will free the memory referenced by the eventMessage parameter.

Return Values

LDAP_SUCCESS Request was successfully sent
[Other value] See LDAP Result Codes for information
See Also

ldap_monitor_events (page 356), Idap_parse ds_event (page 360), Idap_event_free (page 338)

LDAP Extension Functions 367

Idap_partition_entry_count

Returns the number of entries in the specified partition.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap partition entry count (
LDAP *1d,
char *dn,
unsigned long *count) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name, in LDAP format, of an entry in the partition whose
entries are to be counted.

count

(OUT) Points to the address where the count is returned.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

368 NDK: LDAP Libraries for C

Remarks

This function stops at the boundary of the partition. It does not cross the boundary and count the
entries in child partitions.

If this function is called immediately after creating a new partition, the count will be inaccurate until
the partition moves from the new state (LDAP_RS NEW_REPLICA) to the on state
(LDAP_RS ON).

For sample code, see getcount.c (http://developer.novell.com/ndk/doc/samplecode/cldap _sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.13) and the requestValue is a BER
encoding of the following:

RequestBer
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.14) and the responsetValue is a
BER encoding of the following:

ResponseBer
count INTEGER

See Also

ldap_get replica_info (page 345)

LDAP Extension Functions 369

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_nds_to Idap

Converts a typeless, distinguished eDirectory name into LDAP format.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx
int ldap nds to
LDAP

unsigned sho
char

Parameters

Id

and HP-UX

.h>

_ldap (

*1d,
rt *ndsName,
**1dapName) ;

(IN) Points to the handle for the LDAP session.

ndsName

(IN) Points to the eDirectory distinguished name in typeless, dotted format that includes the
tree name (for example: ksmith.provo.novell.novell inc). The string must be a Unicode string.
If the object is in a DNS rooted tree, com.dns must be included as the tree name (for example:

ksmith.provo

IdapName

.novell.com.dns).

(OUT) Points to the entry's distinguished name in LDAP format, for example, "cn=ksmith,
ou=provo, o=novell"

Return Values

0x00
0x01

0x53
0x5A
0x5C

Non-zero

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

Non-zero values indicate errors. See “LDAP Return Codes”.

370 NDK: LDAP Libraries for C

Remarks

This function is provided for legacy eDirectory applications and utilities that expect the entry names
to be entered in eDirectory typeless, dotted format.

It is provided for convenience, but should be used sparingly or the application's performance will be
affected. This is not a local function. The function makes a call to the LDAP server to find the types.

The function allocates memory for the ldapName parameter, and the caller is responsible for freeing
it with the Idapx_memfree function.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.1) and the requestValue is a BER
encoding of the following:

RequestBer
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.2) and the responsetValue is a
BER encoding of the following:.

ResponseBer
ldapName OCTET STRING

LDAP Extension Functions 371

Idap_nds_to x500 _dn

Converts a namemapped dn into LDAP format.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5.1

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap nds to x500 dn (

LDAP *1d,
unsigned short *namemappeddn,
char **1dapName) ;
Parameters
1d

(IN) Points to the handle for the LDAP session.

namemappeddn

(IN) Points to the namemapped distinguished name of the object.

IdapName
(OUT) Points to the entry's distinguished name in LDAP format.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

372 NDK: LDAP Libraries for C

Remarks

This function is provided for applications which need to get the LDAP format of the distinguished
name instead of namemapped format.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.101) and the requestValue is a BER
encoding of the following:

RequestBer
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.102) and the responseValue is a
BER encoding of the following:

ResponseBer
ldapName OCTET STRING

LDAP Extension Functions 373

Idap_receive_all updates

Requests that a specified replica on a specified server receive all updates.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap receive all updates (
LDAP *1d,
char *partitionRoot,
char *toServerDN,
char *fromServerDN) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

partitionRoot

(IN) Points to the distinguished name, in LDAP format, of the replica that receives the updates.

toServerDN

(IN) Points to the distinguished name, in LDAP format, of the server holding the replica to be
updated.

fromServerDN

(IN) Points to distinguished name, in LDAP format, of the server from which the updates are
sent. Not currently used.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

374 NDK: LDAP Libraries for C

Remarks

A replica's distinguished name is the distinguished name of the replica's root container, called the
partition root in eDirectory.

In NDS 7.x and above, updates can come from any server that holds a replica of the partition;
therefore, eDirectory does not currently use the fromServerDN parameter to specify which server
should send the updates.

Each 1d is associated with a particular server. eDirectory uses the 1d rather than the toServerDN
parameter to specify the server with the replica that needs updating.

For sample code, see recvupd.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.21) and the requestValue is a BER
encoding of the following:

RequestBer
partitionRoot LDAPDN
toServerDN LDAPDN
fromServerDN LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.22) and the response Value has no
value.

ResponseBer
NULL

See Also

ldap _send_all updates (page 388)

LDAP Extension Functions 375

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_refresh_server

Restarts the LDAP server associated with the specified session handle.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap refresh server (
LDAP *1d) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x32 LDAP_INSUFFICIENT_ACCESS

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

Remarks

Each Id is associated with a particular LDAP server. By specifying the 1d, you specify the LDAP
server that is restarted, and you use the authentication credentials established for that 1d.

To restart the LDAP server, the client must have write permissions to the extensionInfo attribute of
the LDAP server object.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.9) and the requestValue has no
value:

RequestBer
NULL

376 NDK: LDAP Libraries for C

The responseName is set to the OID (2.16.840.1.113719.1.27.100.10) and the responsetValue has no
value:.

ResponseBer
NULL

LDAP Extension Functions 377

Idap_remove_orphan_partition

Removes the specified orphan partition from the specified server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap remove orphan partition (
LDAP *1d,
char *serverDN,
char *contextName) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

serverDN

(IN) Points to the distinguished name of the server holding the orphan naming context to
remove.

contextName

(IN) Points to the distinguished name of the orphan partition (naming context) to remove.

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

This function fails if the server does not hold the specified partition.

378 NDK: LDAP Libraries for C

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.41) and the requestValue is a BER
encoding of the following:

RequestBer

serverDN LDAPDN
contextName LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.42) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap create orphan_partition (page 336)
ldap_abort_partition_operation (page 326)

LDAP Extension Functions 379

Idap_remove_replica

Removes a replica from the specified directory server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx

int ldap_ remove
LDAP *1d,
char *dn,
char *serv
int flag

Parameters

Id

and HP-UX

.h>

_replica (

erDN,
s);

(IN) Points to the handle for the LDAP session.

dn

(IN) Points to the distinguished name, in LDAP format, of the replica to be removed.

serverDN

(IN) Points to the distinguished name, in LDAP format, of the server holding the replica to be

removed.

flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When
set to zero, the status of the servers is not checked. When set to
LDAP _ENSURE_SERVERS UP, all the servers must be up for the operation to proceed.

Return Valu

es

0x00
0x01

0x53
Ox5A
0x5C

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

380 NDK: LDAP Libraries for C

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

Remarks

A replica's distinguished name is the distinguished name of the replica's root container, called the
partition root in eDirectory.

The caller must have supervisor rights to the master replica.

This function can remove all the replicas of a partition except the master replica. If the master
replica is the only replica left, it is removed by merging the child partition with its parent partition.

For sample code, see remrepl.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.11) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
serverName LDAPDN
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.12) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap_add replica (page 328)

LDAP Extension Functions 381

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_request_partition_sync

Schedules synchronization of the specified partition after the specified delay.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx

and HP-UX

.h>

int ldap request partition sync (

LDAP *1d,
char *serverDN,
char *partitionRoot,
int delay);
Parameters
Id

(IN) Points to the handle for the LDAP session.

serverDN

(IN) Points to distinguished name, in LDAP format, of the server containing the partition.

partitionRoot

(IN) Points to the distinguished name, in LDAP format, of the partition root to synchronize.

delay

(IN) Specifies the time, in seconds, to delay before synchronization starts.

Return Valu

es

0x00
0x01

0x53
0x5A
0x5C

Non-zero

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

Non-zero values indicate errors. See “LDAP Return Codes”.

382 NDK: LDAP Libraries for C

Remarks

In eDirectory, this function causes the server to examine its Transitive Vector attribute, and the
server initiates synchronization with those servers whose replica update time is older than the local
time stamp.

For sample code, see parsync.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.25) and the requestValue is a BER
encoding of the following:

RequestBer
serverName LDAPDN
partitionRoot LDAPDN
delay INTEGER

The responseName is set to the OID (2.16.840.1.113719.1.27.100.26) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap_receive all updates (page 374)
ldap _send all updates (page 388)

LDAP Extension Functions 383

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_request_schema_sync

Schedules synchronization of the schema after the specified delay.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx

int ldap_ reques

and HP-UX

.h>

t schema sync (

LDAP *1d,
char *serverDN,
int delay);
Parameters
1d
(IN) Points to the handle for the LDAP session.
serverDN
(IN) Points to the distinguished name, in LDAP format, of the server.
delay

(IN) Specifies the time, in seconds, to delay before synchronization starts.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

Remarks

For sample code, see schsync.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/

index.htm).

384 NDK: LDAP Libraries for C

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.27) and the requestValue is a BER
encoding of the following:

RequestBer
serverName LDAPDN
delay INTEGER

The responseName is set to the OID (2.16.840.1.113719.1.27.100.28) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap request partition_sync (page 382)

LDAP Extension Functions 385

Idap_restore_object

Restores an object's attribute name and values that were saved by calling Idap backup object
(page 330).

LDAP Version: v3
Library: *Idapx.*
NDS Version: 8.8 or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

ldap restore object (
LDAP *1d,
const char *dn,
const char *passwd,
char *objectInfo,
char *chunckSize,
int size):;

Parameters
1d

(IN) Points to the handle for the LDAP session.
dn

(IN) Points to the distinguished name of the object for which information is to be restored.

passwd

(IN) Points to the password for encryption and decryption, when any one of the attributes in the
user object has been encrypted. If password is supplied then the connection to the servers will
be over TLS.

objectInfo

(OUT) Points to the requested attribute names and values.

chunckSize
(OUT) Specifies the length of each chunk.

size

(OUT) Specifies the length of the information to be restored.

Return Values

LDAP_PARAM_ERROR

386 NDK: LDAP Libraries for C

LDAP_NO MEMORY
LDAP_ENCODING ERROR
LDAP _NOT_SUPPORTED
LDAP_SUCCESS

See Also

ldap backup object (page 330)

LDAP Extension Functions 387

Idap_send_all _updates

Requests that a specified server send all updates to the replica ring.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap send all updates (
LDAP *1d,
char *partitionRoot,
char *origServerDN) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

partitionRoot

(IN) Points to the distinguished name, in LDAP format, of the replica that contains the updates.

origServerDN

(IN) Points to the distinguished name, in LDAP format, of the server that sends the updates.
Not currently used.

Return Values

0x00 LDAP_SUCCESS

0x01 LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

0x53 LDAP_ENCODING_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

388 NDK: LDAP Libraries for C

Remarks

A replica's distinguished name is the distinguished name of the replica's root container, called the
partition root in eDirectory.

In NDS 7.x and higher, any server containing a replica can send updates. Since each ld has a server
assoicated with it, NDS uses the 1d to specify the originating server rather than the origServerDN
parameter.

For sample code, see sendupd.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.23) and the requestValue is a BER
encoding of the following:

RequestBer
partitionRoot LDAPDN
origServerDN LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.24) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap receive all updates (page 374)

LDAP Extension Functions 389

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_set _replication_filter

Sets the attribute and class filter for an eDirectory filtered replica.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5, SP1

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

int ldap set replication filter (
LDAP *1d,
char *serverDN,
char *filter);

Parameters
1d
(IN) Points to the handle for the LDAP session.

serverDN
(IN) Points to the distinguished name of the server that holds the filtered replicas.

filter

(IN) Points to the filter that identifies the classes and attributes that are allowed in filtered
replicas on the server. For the format, see Section 6.6, “Replication Filters,” on page 423.

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

0x5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

390 NDK: LDAP Libraries for C

Remarks

An eDirectory server can only have one replication filter, and that filter is used for all filtered
replicas on the server.

NDS eDirectory 8.5 and above supports filtered replicas. The extension to get and set the replication
filter is not available until NDS 8.5 SP1.

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.35) and the requestValue is a BER
encoding of the following:

RequestBer
serverName LDAPDN
SEQUENCE of SEQUENCE ({
classname OCTET STRING
SEQUENCE of ATTRIBUTES

}

where
ATTRIBUTES:: OCTET STRING

The responseName is set to the OID (2.16.840.1.113719.1.27.100.36) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap_get replication_filter (page 343)

LDAP Extension Functions 391

Idap_split_orphan_partition

Splits the specified orphan partition from the specified server.

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>
int ldap split orphan partition (
LDAP *1d,

char *serverDN,
char *contextName) ;

Parameters

1d
(IN) Points to the handle for the LDAP session.

serverDN

(IN) Points to the distinguished name of the server holding the orphan partition.

contextName

(IN) Points to the distinguished name of the orphan partition (naming context) to split.

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.
Remarks

This function fails if the server does not hold the specified partition.

392 NDK: LDAP Libraries for C

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.41) and the requestValue is a BER
encoding of the following:

RequestBer

serverDN LDAPDN
contextName LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.42) and the responseValue has no
value.

ResponseBer
NULL

See Also

ldap create orphan_partition (page 336)
ldap_abort_partition_operation (page 326)

LDAP Extension Functions 393

Idap_spli

Splits a partition.

t_partition

LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX,

Syntax

#include <ldapx

and HP-UX

.h>

int ldap split partition (

LDAP *1d,
char *dn,

int flags);

Parameters

Id

(IN) Points to the handle for the LDAP session.

dn

(IN) Specifies the distinguished name, in LDAP format, of the new root partition.

flags

(IN) Specifies whether all the servers in the replica ring must be up before proceeding. When

set to zero, th

e status of the servers is not checked. When set to

LDAP_ENSURE SERVERS UP, all the servers must be up for the operation to proceed.

Return Valu

es

0x00
0x01

0x53
Ox5A
0x5C

Non-zero

LDAP_SUCCESS

LDAP_OPERATIONS_ERROR: A string is returned with this error code that indicates
the source of the error.

LDAP_ENCODING_ERROR
LDAP_NO_MEMORY
LDAP_NOT_SUPPORTED

Non-zero values indicate errors. See “LDAP Return Codes”.

394 NDK: LDAP Libraries for C

Remarks

This operation is performed on the server containing the master replica of the parent partition. The
caller must have supervisor rights to the child's master replica and the parent's master replica.

For sample code, see splitpart.c (http://developer.novell.com/ndk/doc/samplecode/cldap sample/
index.htm).

Packet Format

The requestName is set to the OID (2.16.840.1.113719.1.27.100.5) and the requestValue is a BER
encoding of the following:

RequestBer
flags INTEGER
dn LDAPDN

The responseName is set to the OID (2.16.840.1.113719.1.27.100.6) and the requestValue has no
value.

ResponseBer
NULL

See Also

ldap_abort_partition_operation (page 326)

LDAP Extension Functions 395

http://developer.novell.com/ndk/doc/samplecode/cldap_sample/index.htm

Idap_trigger_back_process

Triggers a background process.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5, SP1

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

LIBLDAP F(int) ldap trigger back process (
LDAP *1d,
int processID);

Parameters

1d
(IN) Points to the handle for the LDAP session.

processID

(IN) Flag determining the background process to trigger. This flag will be one of the following:
LDAP BK PROCESS BKLINKER 1

LDAP BK PROCESS JANITOR 2

LDAP_BK PROCESS LIMBER 3

LDAP BK PROCESS SKULKER 4

LDAP BK PROCESS SCHEMA SYNC 5

LDAP BK PROCESS PART PURGE 6

Return Values

0x00 LDAP_SUCCESS

0x53 LDAP_ENCODING_ERROR

0x59 LDAP_PARAM_ERROR

Ox5A LDAP_NO_MEMORY

0x5C LDAP_NOT_SUPPORTED

Non-zero Non-zero values indicate errors. See “LDAP Return Codes”.

396 NDK: LDAP Libraries for C

Remarks

eDirectory background processes run automatically at periodic intervals to keep different replicas in
an eDirectory tree synchronized. On rare occasions, it may be desirable to initiate one or more of
these processes manually rather than waiting for the next scheduled execution.

Back Linker (Reference Checker). Keeps the "backlink" attribute of objects synchronized
between servers. This attribute keeps track of external references to the object and also maintains
DRLs (Dynamic Reference Links, "Used By" attribute).

Janitor. Cleans up bindery information, refreshes server status, and updates inherited ACLs.

Limber. Maintains tree connectivity, making sure tree names are consistent among servers. Also
caches information from the NCPServer object and index information. After creating a new index,
an application may want to kick off the limber process to cause it to start creating the index
immediately.

Skulker. Replicates and synchronizes directory data among replicas. A developer may want to
initiate this process to start data synchronization immediately.

Schema Sync. Replicates and synchronizes the schema.

Partition Purge. Purges deleted entries and deleted values that have been synchronized with all
replicas.

LDAP Extension Functions 397

Idapx_memfree

Frees memory allocated by the LDAP extension library.
LDAP Version: v3

Library: *ldapx.*

NDS Version: 8.5

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldapx.h>

void ldapx memfree (
void *mem) ;

Parameters
mem

(IN) Points to the memory to free.
Remarks

This function should be used to free any memory allocated by the LDAP extension library.

The request and reply packets have the following formats.

See Also

ldap get bind dn (page 339)
ldap_list_replicas (page 352)
ldap nds to Idap (page 370)

398 NDK: LDAP Libraries for C

UTF-8 Functions

Directory data in the LDAPv3 API is sent and received in UTF-8 format. For a discussion of the
relationship between UTF-8, local, multi-byte, wide character, and unicode, see Section 1.8,
“Character Conversions,” on page 44.

To simplify the use of UTF-8 character sets, the LDAP SDK contains functions to provide
developers a standard, cross-platform method to work with UTF-8 strings.

Functions to convert data between wide character and UTF-8 formats are grouped in the following
categories:

¢ Section 5.1, “UTF-8 / Wide Character Conversions,” on page 399.

In addition, the LDAP SDK contains a number of utility functions for working with UTF-8 strings.
They are contained in the following category:

¢ Section 5.2, “UTF-8 Utility Functions,” on page 405.

5.1 UTF-8 /| Wide Character Conversions

The UTF-8 / wide conversion routines follow the pattern of the ANSI C conversion routines. These
routines use the wchar_t type, which is two bytes on some systems and four bytes on others. The
advantage to using the wchar t type is that all the standard wide-character functions may be used on
these strings, such as wcslen, wscat, etc.

UTF-8 Functions 399

Idap_x_utf8 to wc

Convert a single UTF-8 encoded character to a wide character.

Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
int ldap x utf8 to wc (

wchar t *wchar,
const char *utf8char);

Parameters

wchar

(OUT) Points to a wide character to receive the converted character code.

utf8char
(IN) Address of the UTF8 sequence of bytes.

Return Values

If successful, the function returns the length in bytes of the UTF-8 input character.

If utf8char is NULL or points to an empty string, the function returns 1 and a NULL is written to
wechar.

If utf8char contains an invalid UTF-8 sequence -1 is returned.

Example

char utchr in[] = { 0xE2U, 0x98U, 0xAOQU };
wchar t wc out;
int n;

/* Convert a UTF-8 character to a wide character.
Returns wc_out = 0x2620.
Returns n = 3. (Byte length of utchr in)

*/

n = ldap x utf8 to wc(&wc _out, utchr in);

400 NDK: LDAP Libraries for C

Idap_x_utf8s_to wcs

Convert a UTF-8 string to a wide character string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

int ldap x utf8s to wcs (

wchar t *wcstr,
const char *utf8str,
size t count) ;
Parameters
wcstr

(OUT) Points to a wide char buffer to receive the converted wide char string. The output string
will be null-terminated if there is space for it in the buffer.

utf8char
(IN) Address of the null-terminated UTF-8 string to convert.

count

(IN) The number of UTF-8 characters to convert, or equivalently, the size of the output buffer
in wide characters.

Return Values

If successful, the function returns the number of wide characters written to westr, excluding the null
termination character, if any.

If westr is NULL, the function returns the number of wide characters required to contain the
converted string, excluding the null-termination character.

If an invalid UTF-8 sequence is encountered, the function returns -1.

If the return value equals count, there was not enough space to fit the string and the null terminator
in the buffer. As much of the string as will fit is written to the buffer, but it is not null-terminated.

Example

#define WCSTRLEN 10

char utstr in[] = { 0xE2U0, 0x98U, OxAOU, ’a’, 'b’, 'c’, 0 };
wchar t wcstr out [WCSTRLEN];

int n;

/* Convert a UTF-8 string to a wide char string.

UTF-8 Functions

401

Returns wcstr out = { 0x2620, 'a’, 'b’, ’'c’, 0 }

Returns n = 4. (# wide chars written, excl null)

If n==WCSTRLEN, the string could not completely fit in the given buffer.
*/
n = ldap x utf8s to wcs(wcstr out, utstr in, WCSTRLEN) ;

402 NDK: LDAP Libraries for C

Idap_x_wc_to utf8

Convert a single wide character to a UTF-8 sequence.

Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
int ldap x wc to utf8 (
char *utf8char,

wchar t wchar,
size t count) ;

Parameters

utf8char
(OUT) Points to a byte array to receive the converted UTF-8 string.

wchar
(IN) The wide character to be converted.

count

(IN) The maximum number of bytes to write to the output buffer. Normally set this to
LDAP MAX UTFS8 LEN, which is defined as 3 or 6 depending on the size of wchar t. A
partial character will not be written.

Return Values
If successful, the function returns the length in bytes of the converted UTF-8 output character.
If wchar is NULL, the function returns 1 and 0 is written to utf8char.

If wchar cannot be converted to a UTF-8 character, the function returns -1.

If the converted character will not fit in count bytes, 0 is returned.

Example

wchar t wc_in = 0x2620;

char utchr out[LDAP MAX UTF8 LEN]; /* Either 3 or 6 bytes */
int n;

/* Convert a wide character to a UTF-8 character.
Returns utchr out[] = { O0xE2, 0x98, 0xAQ }
Returns n = 3. (Byte length of utchr out)
*/
n = ldap x wc_to utf8(utchr out, wc in, LDAP MAX UTF8 LEN);

UTF-8 Functions 403

Idap_x _wcs_to_utf8s

Convert a wide character string to a UTF-8 string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

int ldap x wcs_to utf8s (

char *utf8str,
const wchar t “*wcstr,
size t count) ;
Parameters
utf8str

(OUT) Points to a byte array to receive the converted UTF-8 string. The output string will be
null terminated if there is space for it in the buffer.

wcstr

(IN) Address of the null-terminated wide char string to convert.

count

(IN) The size of the output buffer in bytes.

Return Values

If successful, the function returns the number of bytes written to utf8str, excluding the null
termination character, if any.

If utf8str is NULL, the function returns the number of bytes required to contain the converted string,
excluding the null-termination character. The count parameter is ignored.

If the function encounters a wide character that cannot be mapped to a UTF-8 sequence, the function
returns -1.

If the return value equals count, there was not enough space to fit the string and the null terminator
in the buffer. As much of the string as will fit is written to the buffer, but it is not null-terminated. A
partial character will not be written.

Example

#define UTFSTRLEN 20

wchar t westr in[] = { 0x2620, "a’, ’'b’, 'c’, 0 };
char utstr out[UTFSTRLEN];

int n;

404 NDK: LDAP Libraries for C

/* Convert a wide char string to a UTF-8 string.

Returns utstr = { 0xE2, 0x98, O0xA0, 'a’, 'b’, ’'c’', 0 }

Returns n = 6. (# bytes written, excl null)

If n==UTFSTRLEN, the string could not completely fit in the given buffer.
*/
n = ldap x wcs_to utf8s(utstr out, wcstr in, UTFSTRLEN) ;

5.2 UTF-8 Utility Functions

The LDAP SDK contains a number of utility functions for working with UTF-8 strings. They are as
follows:

¢ ldap x utf8 chars (page 406) Return the number of UTF-8 characters (not bytes) in a null-
terminated UTF-8 string.

¢ ldap x_ utf8 charlen (page 407) Return the number of bytes in a UTF-8 character.

¢ ldap x_ utf8 next (page 409) Find the next character in a UTF-8 string.

¢ ldap x utf8 prev (page 410) Find the previous character in a UTF-§ string.

¢ ldap x utf8 copy (page 411) Copy one UTF-8 character.

¢ ldap x utf8 strchr (page 412) Find a character in a string.

¢ ldap x utf8 strspn (page 413) Find the first substring.

¢ ldap x utf8 strcspn (page 414) Find a substring in a string.

¢ ldap x utf8 strpbrk (page 415) Find first occurrence of a character from one string in another
string.

¢ ldap x utf8 strtok (page 416) Find next token in string.

UTF-8 Functions

405

Idap_x_utf8 chars

Return the number of UTF-8 characters (not bytes) in a null-terminated UTF-8 string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

ber len t ldap x utf8 chars (
const char *p);

Parameters

p
(IN) Contains the null-terminated UTF-8 string to count.

Return Values

Number of chars (not bytes) in p.

Example

/* String with 4 UTF-8 characters */

char utstr[] = { 0xe2U, 0x98U, 0xalOUu, ’'a’, 'b’, ’'c’, 0 };
int n = ldap x utf8 chars(utstr); /* Returns 4 */

406 NDK: LDAP Libraries for C

Idap_x_utf8 charlen

Return the number of bytes in a UTF-8 character.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

int ldap x utf8 charlen (
const char *p);

Parameters

p
(IN) Points to the UTF-8 character.

Return Values

Returns length in bytes of the UTF-8 character. (1-6). 0 is returned for an invalid character.

Remarks

The length of the character is determined by looking only at the first byte of the UTF-8 character.

Example

/* String starts with a 3-byte UTF-8 character. */

char utstr[] = { 0xe2U, 0x98U, 0xalOU, ’'a’, 'b’, ’'c’, 0 };

int n = ldap x utf8 charlen(utstr); /* Returns 3 */

n = ldap x utf8 charlen (utstr+4); /* 'b’ char. Returns 1 */

UTF-8 Functions 407

Idap_x_utf8 charlen2

Return the number of bytes in a UTF-8 character, while catching shortest possible illegal UTF-8
encoding.

Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

int ldap x utf8 charlen2 (
const char *p);

Parameters

p
(IN) Points to the UTF-8 character.

Return Values

Returns length in bytes of the UTF-8 character. (1-6). 0 is returned for an invalid character.

Remarks

The length of the character is determined by looking only at the first byte of the UTF-8 character.

408 NDK: LDAP Libraries for C

Idap_x_utf8 next

Find the next character in a UTF-8 string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

char* ldap x utf8 next (
const char *p);

Parameters

p
(IN) Points to a UTF-8 string.

Return Values

Returns the address of the next UTF-8 character in the string.

Remarks

The function will step over NULLSs just like any other character. The application must take care not
to step beyond the end of the string.

Example

/* String starts with a 3-byte UTF-8 character. */

char utstr[] = { 0xe2U, 0x98U, 0xalOu, ’'a’, 'b’, ’'c’, 0 };

char *p = ldap x utf8 next (utstr); /* p now points to the 'a’ char */

p = ldap_x utf8 next(p); /* p now points to the ’b’ char */

UTF-8 Functions

409

Idap_x_utf8 prev

Find the previous character in a UTF-8 string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>

char* ldap x utf8 prev (
const char *p);

Parameters

p
(IN) Points to a UTF-8 string.

Return Values

Returns a pointer to the previous character in the string.

Remarks

The application must take care not to step beyond the beginning of the string.

Example

char utstr[] = { 0xe2U, 0x98U, 0xalOU, ’'a’, 'b’, ’'c’, 0 };

char *p = ldap x utf8 prev(utstr+4); /* p now points to the 'a’ char */
p = ldap x utf8 prev(p); /* p now points to the beginning char */

410 NDK: LDAP Libraries for C

Idap_x_utf8 copy

Copy one UTF-8 character.
Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
int ldap x utf8 copy (

char *dst,
const char *src);

Parameters

dst
(IN) Points to the output buffer.

Sre

(IN) Points to the UTF-8 character to copy.

Return Value

Number of bytes copied.
Example
char utstr[] = { 0xe2U, 0x98U, 0xalOu, ’'a’, 'b’, ’'c’, 0 };

char dest[3];

int n = ldap_x utf8 copy(dest, utstr); /* Copies lst char.

Returns 3.

*/

UTF-8 Functions 411

Idap_x_utf8 strchr

Find a character in a string.

Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
char * ldap x utf8 strchr (

const char *str,
const char *chr);

Parameters

str

(IN) Null-terminated UTF-8 string to search.

chr
(IN) Points to the UTF-8 character to be located.

Return Values

Returns the first occurrence of chr in str, or NULL if not found.

Example

char utstr[] = { "a’", 'b’, 0xe2U, 0x98U, OxalU, 'x’', 'y', 0 };

char chr[] = { 0xe2U, 0x98U, 0xalU };

char *p = ldap x utf8 strchr(utstr, chr); /* Returns utstr+2 */

412 NDK: LDAP Libraries for C

Idap_x_utf8 strspn

Find the first substring.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
ber len t ldap x utf8 strspn (

const char *str,
const char *set);

Parameters

str
(IN) Null-terminated UTF-8 string to search.

set

(IN) Null-terminated character set.

Return Values

Returns the length of the substring in str that consists entirely of characters in set.

Remarks

This function returns the number of bytes, not characters.

Example

char utstr[] = { "a’", 'b’, 0xe2U, 0x98U, OxalU, 'x’', 'y', 0 };
char set[] = { 'b’, 0xe2U, 0x98U, 0OxalOu, ’a’, 0 };

int n = ldap x utf8 strspn(utstr, set); /* Returns 5 */

UTF-8 Functions 413

Idap_x_utf8 strcspn

Find a substring in a string.
Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
ber len t ldap x utf8 strcspn (

const char *str,
const char *set);

Parameters

str
(IN) Null-terminated UTF-8 string to search.

set

(IN) Null-terminated character set.

Return Values

Returns the length of the initial segment of str that consists entirely of characters not in set.

Remarks

This function returns the number of bytes, not characters.

Example

char utstr[]
char set[] =
int n = ldap_

{ "a’, 'b", 0xe2U, 0x98U, OxalOu, ’'x’', ’'y', 0 };
'x", Oxe2U, 0x98U, 0xalOuU, 0 };
_utf8 strcspn(utstr, set); /* Returns 2 */

W=l

414 NDK: LDAP Libraries for C

Idap_x_utf8 strpbrk

Find first occurrence of a character from one string in another string.

Library: *1dapsdk.*

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-

bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
char * ldap x utf8 strpbrk (

const char *str,
const char *set);

Parameters

str

(IN) Null-terminated UTF-8 string to search.

set

(IN) Null-terminated character set.

Return Values

Returns a pointer to the first occurrence of any character from set in str.

Example

char utstr[] = { "a’", 'b’, 0xe2U, 0x98U, OxalU, 'x’', 'y', 0 };

char set[] = { ’'x’, 0xe2U, 0x98U, 0xalOU, 0 };

char *p = ldap x utf8 strpbrk(utstr, set); /* Returns utstr+2

*/

UTF-8 Functions

415

Idap_x_utf8 strtok

Find next token in string.

Library: *1dapsdk.*

NDS Version: 7.xx or higher

Platform: NLM, Windows (NT, 95, 98, 2000, XP, Vista 32-bit and 64-bit), Linux (32-bit and 64-
bit), Solaris, AIX, and HP-UX

Syntax

#include <ldap utf8.h>
char * ldap x utf8 strtok (
char *str,

const char *sep,
char **last) ;

Parameters

str

(IN) UTF-8 string to parse. On subsequent calls to this function this parameter should be
NULL.

sep
(IN) Set of separator characters.

last

(IN/OUT) After each function call, returns a pointer to the token following the separator
character. This value should be passed in to the next function call.

Return Values

Returns a pointer to the next token found in str.

Remarks

Parses a string into tokens based on a set of delimiters. When a delimiter is encountered, it is
replaced by a NULL, allowing the token to be processed as a null-terminated string.

On the first call, a value is returned in last. On subsequent calls, NULL should be given for str. Last
is updated after each call.

416 NDK: LDAP Libraries for C

Example

char utstr[] = { "a’, 0xe2U, 0x98U, 0OxalOU, 'b’, Oxe2U, 0x98U, OxalOu, ’'c’,
char delims[] = { 0xe2U, 0x98U, 0xalOU, 0 };

char *last;

char *p;

p = ldap x utf8 strtok(utstr, delims, &last); /* p points to "a" */
p = ldap x utf8 strtok(NULL, delims, &last); /* p points to "b" */
p = ldap x utf8 strtok(NULL, delims, &last); /* p points to "c" */

0 }s

UTF-8 Functions

417

418 NDK: LDAP Libraries for C

Values

This chapter defines the flags used by the LDAP functions.

6.1 Object Access Control Rights

Table 6-1 Object Rights

Flag Name C Value Description

DS _ENTRY_BROWSE 0x00000001L Allows a trustee to discover objects in the
eDirectory tree.

DS_ENTRY_ADD 0x00000002L Allows a trustee to create child objects (new
objects that are subordinate to the object in the
tree).

DS _ENTRY_DELETE 0x00000004L Allows a trustee to delete an object. This right
does not allow a trustee to delete a container
object that has subordinate objects.

DS_ENTRY_RENAME 0x00000008L Allows a trustee to rename the object.

DS_ENTRY_SUPERVISOR 0x00000010L Gives a trustee all rights to an object and its
attributes.

DS_ENTRY_INHERIT_CTL 0x00000040L Allows a trustee to inherit the rights granted in the

ACL and exercise them on subordinate objects.

6.2 Attribute Access Control Rights

Table 6-2 Attribute Rights

Flag Name C Value Description

LDAP_DS ATTR_COMPARE 0x00000001L Allows a trustee to compare a value with an
attribute’s value. This allows the trustee to see if
the attribute contains the value without having
rights to see the value.

LDAP_DS_ATTR_READ 0x00000002L Allows a trustee to read an attribute value. This
right confers the Compare right.

LDAP_DS ATTR_WRITE 0x00000004L Allows a trustee to add, delete, or modify an
attribute value. This right also gives the trustee
the Self (Add or Delete Self) right.

LDAP_DS_ATTR_SELF 0x00000008L Allows a trustee to add or delete its name as an

attribute value on those attributes that take
object names as their values.

Values

419

Flag Name C Value Description

LDAP_DS _ATTR_SUPERVISOR 0x00000020L Gives a trustee all rights to the object’s
attributes.

LDAP_DS ATTR_INHERIT_CTL 0x00000040L Allows a trustee to inherit the rights granted in
the ACL and exercise these attribute rights on
subordinate objects.

6.3 Certificate Attribute IDs

Table 6-3 Certificate Attribute IDs

Attribute ID Data Type Description

LDAPSSL_CERT_ATTR_ISSUER char * A pointer to a character array
containing the certificate issuer
name. The issuer is the
distinguished name of the certificate
authority that issued the certificate.
The length returned is the length of
the string not including the NULL
termination character.

LDAPSSL_CERT_ATTR_SUBJECT char * A pointer to a character array
containing the certificate subject
name. The subject is the
distinguished name of the entity that
owns the certificate. The length
returned is the length of the string
not including the NULL termination
character.

LDAPSSL_CERT_ATTR_VALIDITY_P LDAPSSL_Cert_Validity_ A pointer to a

ERIOD Period * LDAPSSL_Cert_Validity_Period
structure. The validity period
structure contains a not valid after
and a not valid before timestamp
which defines the period during
which the certificate should be
considered valid. The timestamps
can be a universal time string or a
generalized time string (see
LDAPSSL_Cert_Validity_Period
(page 497)).

LDAPSSL_CERT_GET_STATUS int* The certificate status codes are
described in Section 6.12, “SSL
Certificate Status Codes,” on
page 436

The cert status is one of sixteen
certificate status codes indicating
the status of an untrusted SSL
certificate.

420 NDK: LDAP Libraries for C

6.4 Inheritance Control Rights

The bit settings for the Inheritance Control rights use values that ensure compatibility with NetWare

4.x.

Table 6-4 Inheritance Control Settings

Object Right
DS_ENTRY_INHERIT_CTL

NetWare Version [All Attributes Rights]

DS_ATTR_INHERIT_CTL

Specific Attribute
DS_ATTR_INHERIT_CTL

NetWare 4.x NetWare 4.x does not NetWare 4.x does not
support this functionality. support this functionality.
Inheritance of object rights Inheritance of rights to [All
is always supported. Attributes Rights] is always
supported.
NetWare 4.x requires this
bit to be set to 0. NetWare 4.x requires this
bit to be set to 0.
NetWare 5.x NetWare 5.x supports this NetWare 5.x supports this

right. Set this bit to 0 (zero) right. Set this bit to 0 (zero)
to allow the inheritance of
the rights granted to [All

to allow the inheritance of
the rights in the ACL.

Attributes Rights].
Set this bit to 1 (one) to

block the inheritance of the Set this bit to 1 (one) to
block the inheritance of the

ACL rights.
ACL rights.

NetWare 4.x does not
support this functionality.
Inheritance of ACLs to
specific attributes is always
blocked.

NetWare 4.x requires this
bit to be set to 0.

NetWare 5.x supports this
right. Set this bit to 1 (one)
to allow the inheritance of
the rights granted to the
specific attribute.

Set this bit to 0 to block the
inheritance of the ACL
rights.

6.5 Replica States

The replica states indicate the current state of the replica. For more information, see “Replica

Transition States” (NDK: Novell eDirectory Technical Overview).

NOTE: These values are not continuous.

Table 6-5 Replica States

Flag Name C Value Meaning

LDAP_RS_ON 0

LDAP_RS_NEW_REPLICA 1

LDAP_RS_DYING_REPLICA 2

Indicates that the replica is fully functioning and capable of
responding to NDS™ requests.

Indicates that a new replica has been added but has not
received a full download of information from

+ The master replica if NDS 6.x and lower

+ Another replica if NDS 7.x and higher
Indicates that a replica of the partition is being deleted. In
NDS 6.x and lower, the replica stays in this state until it

synchronizes with another replica. In NDS 7.x and higher,
indicates that the request has been received.

Values

421

Flag Name

C Value

Meaning

LDAP_RS_LOCKED

LDAP_RS_TRANSITION_ON

LDAP_RS_DEAD_REPLICA

LDAP_RS_BEGIN_ADD

LDAP_RS_MASTER_START

LDAP_RS_MASTER_DONE

LDAP_RS_SS 0

LDAP_RS_SS_1

LDAP_RS_JS 0

LDAP_RS JS 1

LDAP_RS_JS 2

3

1

12

48

49

64

65

66

Indicates that the replica is locked. The move partition
operation uses this state to lock the parent partition of the
child partition that is moving.

Indicates that a new replica has finished receiving its
download from the master replica and is now receiving
synchronization updates from the other replicas.

Used only in NDS 6.x and lower.

Indicates that the dying replica needs to synchronize with
another replica before being converted to an external
reference, if a root replica, or to a subordinate reference, if
a nonroot replica.

Used only in NDS 7.x and higher.

Indicates that subordinate references of the new replica
are being added.

Used only in NDS 7.x and higher.

Indicates that a partition is receiving a new master replica.
The replica that will be the new master replica is set to this
state.

Indicates that a partition has a new master replica. When
the new master is set to this state, it knows it is now the
master and changes its replica type to master and the old
master to Read/Write.

Indicates that a partition is going to split into two partitions.
In this state, other replicas of the partition are informed of
the pending split operation.

Indicates that the split partition operation has started.
When the split is finished, the state will change to RS_ON.

Indicates that two partitions are in the process of joining
into one partition. In this state, the replicas that are affected
are informed of the join operation. The master replica of the
parent and child partitions are first set to this state and then
all the replicas of the parent and child. New replicas are
added where needed.

Indicates that two partitions are in the process of joining
into one partition. This state indicates that the join
operation is waiting for the new replicas to synchronize and
move to the RS_ON state.

Indicates that two partitions are in the process of joining
into one partition. This state indicates that all the new
replicas are in the RS_ON state and that the rest of the
work can be completed.

422 NDK: LDAP Libraries for C

6.6 Replication Filters

NDS eDirectory 8.5 and above support filtered replicas. Previous versions of eDirectory do not
support filtered replicas.

A single replication filter is set for an eDirectory server, and all replicas that reside on that specified
server conform to that particular filter. The filter parameter (for the ldap get replication_filter and
ldap_set_replication_filter functions) is a UTF string that comprises a sequence of object class
names and attribute names delimited by the dollar ($) sign. The filter follows these rules:

1. Each class name and each attribute name is teminiated by a $ sign.
2. Each sequence of a class with its attribute names is terminated by a $ sign.

3. The filter is terminated with a $ sign.

The asterisk character (*) can be used in place of an attribute name to indicate all attributes from a
particular class.

The following sample filter selects three attributes from the user class and one attribute from the
groupOfUniqueNames class for the filter.

"usercnsurname$mail $SgroupOfUniqueNamesSmembersS$s"

The following sample filter selects all attributes from the user class and one attribute from the
groupOfUniqueNames class for the filter:

"user$*$SgroupOfUniqueNamesS$member$ss"
A single $ sign in a filter is used for two special cases:

+ It resets the filter.

¢ [t represents the absence of a filter on the server.

6.7 Replica Types

The replica types identify the type of replica and are defined in the REPLICA TYPE typedef
enumeration in the 1dapx . h file. Replica type determines the types of client operations that can be
performed on the replica.

Table 6-6 Replica Types

Flag Name C Value Meaning

LDAP_RT_MASTER 0 Identifies this replica as the master replica of the partition.
Entries can be modified; partition operations can be
performed.

LDAP_RT_SECONDARY 1 Identifies this replica as a secondary replica of the partition.

Secondary replicas are Read/Write replicas and entries
can be modified.

LDAP_RT_READONLY 2 Identifies the replica as a Read-Only replica. Only the
eDirectory synchronization processes can modify the
information on this replica.

Values

423

Flag Name

C Value

Meaning

LDAP_RT_SUBREF

LDAP_RT_SPARSE_WRITE

LDAP_RT_SPARSE_READ

LDAP_RT_COUNT

3

4

Identifies the replica as a subordinate reference. eDirectory
automatically adds these replicas to a server when the
server does not contain replicas of all child partitions. Only
eDirectory can modify information on this replica.

Identifies the replica as a Read/Write replica with sparse
data. It is configured to contain only specified object types
and attributes.

Identifies the replica as a Read-Only replica with sparse
data. It is configured to contain only specified object types
and attributes.

Identifies the total number of replica types that have been
defined.

6.8 Request Message Types

The following table details the types of the request messages that are supported by the LDAP

libraries for C.

Table 6-7 Request Messages Types

Type

Description

LDAP_REQ_DELETE (0x4A)
LDAP_REQ_UNBIND (0x42)
LDAP_REQ_ABANDON (0x50)
LDAP_REQ_BIND (0x60)
LDAP_REQ_SEARCH (0x63)
LDAP_REQ_MODIFY (0x66)
LDAP_REQ_ADD (0x68)
LDAP_REQ_RENAME
LDAP_REQ_MODDN
LDAP_REQ_MODRDN (0x6C)
LDAP_REQ_COMPARE (Ox6E)
LDAP_REQ_EXTENDED (0x77)

Indicates a delete operation.
Indicates an unbind operation.
Indicates a request to abandon an operation.
Indicates a bind operation.
Indicates a search operation.
Indicates a modify operation.
Indicates an add operation.

See LDAP_REQ_MODRDN.

See LDAP_REQ_MODRDN.
Indicates a modify RDN operation.
Indicates a compare operation.

Indicates an extended operation

6.9 Result Message Types

The following table details the types of the result messages that are supported by the LDAP libraries

for C.

424 NDK: LDAP Libraries for C

Table 6-8 Result Message Type

Type

Description

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)

LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD ((0x89)

LDAP_RES_DELETE (0x6B)

LDAP_RES_RENAME (0x6D)

LDAP_RES_MODDN (0x6D)

LDAP_RES_MODRDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_SEARCH_REFERENCE (0x73)

LDAP_RES_EXTENDED (0x78)

Indicates that the LDAPMessage structure contains
the results of a bind operation.

Indicates that the LDAPMessage structure contains
information about an entry which was found during
a search operation.

Indicates that the LDAPMessage structure contains
the results of a search operation

Indicates that the LDAPMessage structure contains
the results of a modify operation.

Indicates that the LDAPMessage structure contains
the results of an add operation.

Indicates that the LDAPMessage structure contains
the results of a delete operation.

Indicates that the LDAPMessage structure contains
the results of a rename operation.

Indicates that the LDAPMessage structure contains
the results of a modify DN operation.

Indicates that the LDAPMessage structure contains
the results of a modify RDN operation.

Indicates that the LDAPMessage structure contains
the results of a compare operation.

Indicates that the LDAPMessage structure contains
a referral to another LDAP server which was found
during a search operation.

Indicates that the LDAPMessage structure contains
the results of an extended operation

6.10 Session Preference Options

These flags are used by the ldap _get option (page 169) and ldap _set _option (page 275) functions.

Table 6-9 Session Preference Options

Option

Description

LDAP_OPT_API_FEATURE_INFO

Specifies version information about an LDAP
API extended feature.

Idap_set_option data type: Not supported;
Idap_get_option data type: LDAPAPIFeaturelnfo

Values 425

Option

Value

Description

LDAP_OPT_API_INFO

LDAP_OPT_CLIENT_CONTROLS

LDAP_OPT_CURRENT_NAME

LDAP_OPT_DEBUG_LEVEL

0x0000

0x0013

0x7003

0x5001

Retrieves basic information about the API
implementation. It cannot be used to set
information.

It includes the API version, minimum LDAP
version, maximum LDAP version, vendor name,
and vendor version. If the Idap_get_option
function returns

+ The vendor name, the application must
free the memory by calling the
Idap_memfree function.

+ Some Idap extensions, the application
must free the memory by calling the
Idap_value_free function.

Idap_set_option data type: Not supported;
Idap_get_option data type: LDAPAPIInfo *;

Specifies a default list of client controls that
affect the LDAP session.

Idap_set_option data type, LDAPControl **;
Idap_get_option data type: LDAPControl ***

The application should free memory with
Idap_controls_free.

Returns the client address associated with the
supplied session handle argument.

Idap_get_option data type : struct sockaddr_in *
This is read only.

Contains the debug level. Uses the following
values:

0x0001 LDAP_DEBUG_TRACE
0x0002 LDAP_DEBUG_PACKETS
0x0004 LDAP_DEBUG_ARGS
0x0008 LDAP_DEBUG_CONNS
0x0010 LDAP_DEBUG_BER
0x0020 LDAP_DEBUG_FILTER
0x0040 LDAP_DEBUG_CONFIG
0x0080 LDAP_DEBUG_ACL
0x0100 LDAP_DEBUG_STATS
0x0200 LDAP_DEBUG_STATS2
0x0400 LDAP_DEBUG_SHELL
0x0800 LDAP_DEBUG_PARSE
0x8000 LDAP_DEBUG_NONE
-1 LDAP_DEBUG_ANY

Idap_set_option and Idap_get_option data type:
int*

426 NDK: LDAP Libraries for C

Option

Value

Description

LDAP_OPT_DEREF

LDAP_OPT_ERROR_STRING

LDAP_OPT_HOST_NAME

LDAP_OPT_MATCHED_DN

0x0002

0x0032

0x0030

0x0033

Determines how aliases are handled during a
search. Supports the following values:

LDAP_DEREF_NEVER (0X00)
LDAP_DEREF_SEARCHING (0x01)
LDAP_DEREF_FINDING (0x02)
LDAP_DEREF_ALWAYS (0x03)

The LDAP_DEREF_SEARCHING flag indicates
that aliases are dereferenced during the search
but not when locating the base object of the
search.

The LDAP_DEREF_FINDING flag indicates that
aliases are dereferenced when locating the base
object but not during the search.

The LDAP_DEREF_ALWAYS flag indicates that
aliases are dereferenced when locating the base
object and when finding entries.

The LDAP_DEREF_NEVER flag indicates that
aliases are not dereferenced.

The default is LDAP_DEREF_NEVER.
Idap_get_option and Idap_set_option data type:
int*

Contains the message that returned with the
most recent LDAP error that occurred on this
session.

Idap_set_option data type: char *;
Idap_get_option data type: char **

The application should free memory with
Idap_memfree.

Specifies the host name or a list of hosts for the
primary LDAP server.

Idap_set_option data type: char *;
Idap_get_option data type: char **

The application should free memory with
Idap_memfree.

Contains the matched DN value returned with
the most recent LDAP error that occurred on this
session.

Idap_set_option data type: char *;
Idap_get_option data type: char **

The application should free memory with
Idap_memfree.

Values

427

Option

Value

Description

LDAP_OPT_NETWORK_TIMEOUT

LDAP_OPT_PEER_NAME

LDAP_OPT_PROTOCOL_VERSION

LDAP_OPT_REFERRAL_LIST

LDAP_OPT_REFERRALS

0x5005

0x7002

0x0011

0x5007

0x0008

Enables a connection timeout to be set. This is
the timeout of the initial connection to a server,
which usually occurs when the bind command is
executed, or, if no bind command is given, on
the first LDAP operation. Initial connections may
also occur during a referral or rebind operation.

If no timeout is set, timeout depends upon the
underlying socket timeout setting of the
operating system.

Idap_set_option data type, struct timeval *;
Idap_get_option data type: struct timeval **

Returns the peer address associated with the
supplied session handle argument.

Idap_get_option data type : struct sockaddr_in *
This is read only.

Specifies the version of the LDAP protocol used
when communication with the LDAP server. It
can be set to one of the following values:

LDAP_VERSION2 (2)
LDAP_VERSIONS3 (3)

If no version is set, the default is
LDAP_VERSION2.

Idap_get_option and Idap_set_option data type:
int*

If the server returns referrals and the client
library is set to return them to the application
(LDAP_OPT_REFERRALS=0), this option can
be used to obtain the list of referrals after an
error 10 (LDAP_REFERRAL). It returns a NULL-

terminated list of string pointers containing the
referrals.

Idap_set_option data type: char**;
Idap_get_option data type char***

The memory returned should be freed by the
application with Idap_value_free().

Determines whether the LDAP libraries
automatically follow referrals. It can be set to
one of the following values:

LDAP_OPT_ON (void*) 1

LDAP_OPT_OFF (void*) 0

The default is ON.

Idap_set_option data type: void*;
Idap_get_option data type: int*

428 NDK: LDAP Libraries for C

Option

Value

Description

LDAP_OPT_RESULT_CODE

LDAP_OPT_RESTART

LDAP_OPT_SERVER_CONTROLS

LDAP_OPT_SESSION_REFCNT

LDAP_OPT_SIZELIMIT

LDAP_OPT_TIMELIMIT

0x0031

0x0009

0x0012

0x8001

0x0003

0x0004

Specifies the code of the most recently returned
LDAP error that occurred on this session.

Idap_get_option and Idap_set_option data type:
int*

Determines whether LDAP /O operations
automatically restart if they abort prematurely. It
can be set to one of the following values:

LDAP_OPT_ON (void*) 1
LDAP_OPT_OFF (void*) 0

The default is OFF

Idap_set_option data type: void*;
Idap_get_option data type: int*

Specifies a default list of LDAP server controls
that are sent with each request.

Idap_set_option data type, LDAPControl **;
Idap_get_option data type: LDAPControl ***

The application should free memory with
Idap_controls_free.

Returns the reference count associated with the
supplied session handle argument.

This is read only.

LDAP server sizelimit, determines how many
entries are returned from a search. A value of
LDAP_NO_LIMIT (0) means no limit. This is a
server limit used in all search operations except
when overridden by a client timeout in the
search_ext functions.

The default is LDAP_NO_LIMIT.

Idap_get_option and Idap_set_option data type:
int*

LDAP Server timelimit, determines the number
of seconds an LDAP server will spend on a
search. A value of LDAP_NO_LIMIT (0) means
no limit. This value is passed to the LDAP server
in the search request. This is a server limit used
in all search operations except when overridden
by a client timeout in the search_ext functions.

The default is LDAP_NO_LIMIT.

Idap_get_option and Idap_set_option data type:
int *

Values

429

Option Value Description

LDAP_OPT_TLS_CIPHER_LIMIT 0x9001 Contains the cipher level and its values:

¢+ LDAP_TLS_CIPHER_LOW: The key
strength is 56 and algorithm is single DES.

¢ LDAP_TLS_CIPHER_MEDIUM: The key
strength is 128 and algorithm is single
RSA.

¢ LDAP_TLS_CIPHER_HIGH: The key
strength is 168 and algorithm is triple DES.

+ LDAP_TLS_CIPHER_EXPORT: The key
strength is 56 and algorithm is SHA.

The default is LDAP_TLS_CIPHER_HIGH.

Idap_get_option and Idap_set_option data
type:int

6.11 Schema Element Types

This chapter contains values used with the Idap schema functions. The following list contains the
types of schema elements that can be used:

¢+ “LDAP_SCHEMA ATTRIBUTE TYPE” on page 430

¢+ “LDAP_SCHEMA OBJECT CLASS” on page 432

¢+ “LDAP SCHEMA MATCHING RULE” on page 433

¢+ “LDAP SCHEMA MATCHING RULE USE” on page 434
¢+ “LDAP SCHEMA NAME FORM?” on page 434

¢+ “LDAP_SCHEMA SYNTAX” on page 435

¢+ “LDAP _SCHEMA DIT CONTENT RULE” on page 435

¢+ “LDAP_SCHEMA DIT STRUCTURE RULE” on page 435

Each section contains a table listing the field names valid in a specific type of a schema element.
Addition fields to those defined in these sections may be used.

6.11.1 LDAP_SCHEMA_ATTRIBUTE_TYPE

Table 6-10 Details of the LDAP _SCHEMA ATTRIBUTE TYPE Schema Elements

Flag Name C Value Description

LDAP_SCHEMA_OID OID Object identifier of the schema element. This
field has only one value.

LDAP_SCHEMA_DESCRIPTION DESC This field is a string definition of the schema
element. This field has only one value.

LDAP_SCHEMA_NAMES NAME Defines all names used to identify the schema
element.

430 NDK: LDAP Libraries for C

Flag Name

C Value

Description

LDAP_SCHEMA_OBSOLETE

LDAP_SCHEMA_SUPERIOR

LDAP_SCHEMA_EQUALITY

LDAP_SCHEMA_SUPERIOR

LDAP_SCHEMA_ORDERING

LDAP_SCHEMA_SUBSTRING

LDAP_SCHEMA_SYNTAX_OID

LDAP_SCHEMA_SINGLE_VALUE
D

LDAP_SCHEMA_COLLECTIVE

LDAP_SCHEMA_NO_USER_MO
D

OBSOLETE

SUP

EQUALITY

SUP

ORDERING

SUBSTR

SYNTAX

SINGLE-VALUE

COLLECTIVE

NO-USER-
MODIFICATION

Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

Defines the name of the attribute from which this
attribute is derived.

Defines the Object identifier of the Matching rule
used for an equality comparison of this attribute.

Defines the name of the attribute from which this
attribute is derived.

Defines the Object identifier of the Matching rule
used for an ordering-collating comparison of this
attribute.

Defines the Object identifier of the Matching rule
used for a substring comparison of this attribute.

Defines the Object identifier of the syntax that
will be used for this attribute.

Defines whether or not this attribute is multi-
valued or not. This field has no value. If the field
name is present the attribute is single valued,
otherwise it is multi-valued.

Defines whether or not this attribute is collective,
meaning all instances of an object with this
attribute will have the same value for this
attribute. This field has no value. If the field name
is present the attribute is collective, otherwise it
is not.

Defines whether or not a user can modify this
attribute. This field has no value. If the field name
is present the attribute is not modifiable,
otherwise it is modifiable.

Values 431

Description

Flag Name C Value
LDAP_SCHEMA_USAGE USAGE
LDAP_SCHEMA _DSA OP dSAOperation

Defines whether this attribute is used by a user
application, a directory operation, a distributed
operation or a per-DSA (Directory Service Agent)
operation. The following define strings for the
value of this field:

LDAP_SCHEMA_USER_APP
userApplications

If the LDAP_SCHEMA_USAGE field name has
this value then the attribute is used by an
application independent of the directory server.

LDAP_SCHEMA_DIRECTORY_OP
directoryOperation

If the LDAP_SCHEMA_USAGE field name has
this value then the directory uses the defined
attribute.

LDAP_SCHEMA_DISTRIBUTED_OP
distributedOperation

If the LDAP_SCHEMA_USAGE field name has
this value then the attribute is share between
DSAs, Directory Server Agents.

If the LDAP_SCHEMA_USAGE field name has
this value then the attribute can be unique for
each DSA, Directory Server Agent.

6.11.2 LDAP_SCHEMA_OBJECT_CLASS

Table 6-11 Details of the LDAP SCHEMA_OBJECT _CLASS Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_OID oD
LDAP_SCHEMA_DESCRIPTION DESC
LDAP_SCHEMA_NAMES NAME

LDAP_SCHEMA_OBSOLETE OBSOLETE

LDAP_SCHEMA_SUPERIOR SUP

LDAP_SCHEMA_MUST_ATTRIB MUST
UTES

LDAP_SCHEMA_MAY_ATTRIBUT MAY
ES

Object identifier of the schema element. This
field has only one value.

This field is a string definition of the schema
element. This field has only one value.

Defines all names used to identify the schema
element.

Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

Defines all attributes that must be defined in an
instance of this object.

Defines the Object identifier of the Matching rule
used for an equality comparison of this attribute.

Defines all attributes that may be defined in an
instance of this object.

432 NDK: LDAP Libraries for C

Flag Name C Value

Description

LDAP_SCHEMA_TYPE_ABSTRA ABSTRACT

CT

LDAP_SCHEMA_TYPE_STRUCT
URAL

STRUCTURAL

LDAP_SCHEMA_TYPE_AUXILIA
RY

AUXILIARY

Defines that this object is abstract. An abstract
object can be derived from but not instantiated.
This field name does not have a value. This field
name cannot be present if
LDAP_SCHEMA_TYPE_STRUCTURAL or
LDAP_SCHEMA_TYPE_AUXILIARY is present.

Defines that this object is structural. A structural
object can be derived from and instantiated. This
field name does not have a value. This field
name cannot be present if
LDAP_SCHEMA_TYPE_ABSTRACT or
LDAP_SCHEMA_TYPE_AUXILIARY is present.

Defines that this object is auxiliary. An auxiliary
object can be associated with any instantiated
object. This field name does not have a value.
This field name cannot be present if
LDAP_SCHEMA_TYPE_ABSTRACT or
LDAP_SCHEMA_TYPE_STRUCTURAL is
present.

6.11.3 LDAP_SCHEMA_MATCHING_RULE

Table 6-12 Details of the LDAP SCHEMA _MATCHING RULE Schema Element

Flag Name C Value Description

LDAP_SCHEMA_OID OID Object identifier of the schema element. This
field has only one value.

LDAP_SCHEMA_DESCRIPTION DESC This field is a string definition of the schema
element. This field has only one value.

LDAP_SCHEMA_NAMES NAME Defines all names used to identify the schema
element.

LDAP_SCHEMA_OBSOLETE OBSOLETE Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

LDAP_SCHEMA_SYNTAX_OID SYNTAX Defines the syntax of the Matching Rule. Only

one value can exist for this field name.

Values

433

6.11.4 LDAP_SCHEMA_MATCHING_RULE_USE

Table 6-13 Details of the LDAP SCHEMA MATCHING RULE Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_OID OID

LDAP_SCHEMA_DESCRIPTION DESC

LDAP_SCHEMA_NAMES NAME
LDAP_SCHEMA_OBSOLETE OBSOLETE
LDAP_SCHEMA_APPLIES APPLIES

Object identifier of the schema element. This
field has only one value.

This field is a string definition of the schema
element. This field has only one value.

Defines all names used to identify the schema
element.

Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

Defines the attributes that the Matching Rule
applies to. This field is required for Matching
Rule Use definitions.

6.11.5 LDAP_SCHEMA_NAME_FORM

Table 6-14 Details of the LDAP SCHEMA NAME FORM Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_OID OID
LDAP_SCHEMA_DESCRIPTION DESC
LDAP_SCHEMA_NAMES NAME

LDAP_SCHEMA_OBSOLETE OBSOLETE

LDAP_SCHEMA_NAME_FORM_ OC
OBJECTS

LDAP_SCHEMA_MUST_ATTRIB MUST
UTES

LDAP_SCHEMA_MAY_ATTRIBUT MAY
ES

Object identifier of the schema element. This
field has only one value.

This field is a string definition of the schema
element. This field has only one value.

Defines all names used to identify the schema
element.

Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

Defines the Object Classes to which this Name
Form applies. This field is required for name
forms..

Defines the mandatory attributes to which this
name form applies. This field is required for
name forms.

Defines the optional attributes to which this
name form applies.

434 NDK: LDAP Libraries for C

6.11.6 LDAP_SCHEMA_SYNTAX

Table 6-15 Details of the LDAP SCHEMA _SYNTAX Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_OID OID

LDAP_SCHEMA_DESCRIPTION DESC

Object identifier of the schema element. This
field has only one value.

This field is a string definition of the schema
element. This field has only one value.

6.11.7 LDAP_SCHEMA_DIT_CONTENT_RULE

Table 6-16 Details of the LDAP SCHEMA _DIT CONTENT RULE Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_OID oD
LDAP_SCHEMA_DESCRIPTION DESC
LDAP_SCHEMA_NAMES NAME

LDAP_SCHEMA_OBSOLETE OBSOLETE

LDAP_SCHEMA_AUX_CLASSES AUX

LDAP_SCHEMA_MUST_ATTRIB MUST
UTES

LDAP_SCHEMA_MAY_ATTRIBUT MAY
ES

LDAP_SCHEMA_NOT_ATTRIBU NOT
TES

Object identifier of the schema element. This
field has only one value.

This field is a string definition of the schema
element. This field has only one value.

Defines all names used to identify the schema
element.

Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

Defines the auxiliary classes that can be applied
to a structural object Class.

Defines the mandatory attributes to which this
name form applies. This field is required for
name forms.

Defines the optional attributes to which this
name form applies.

Defines the attributes that a structural object
class cannot obtain from an auxiliary class.

6.11.8 LDAP_SCHEMA_DIT_STRUCTURE_RULE

Table 6-17 Details of the LDAP SCHEMA DIT STRUCTURE RULE Schema Element

Flag Name C Value

Description

LDAP_SCHEMA_RULE_ID RULEID

Defines the integer identifier for this rule.

Values

435

Flag Name C Value Description

LDAP_SCHEMA_DESCRIPTION DESC This field is a string definition of the schema
element. This field has only one value.

LDAP_SCHEMA_NAMES NAME Defines all names used to identify the schema
element.

LDAP_SCHEMA_OBSOLETE OBSOLETE Defines whether this schema definition is still in
use. This field has no value. If the field name is
present, the definition is obsolete; otherwise the
definition is still valid.

LDAP_SCHEMA_NAME_FORM_ FORM Defines the Name Form that applies to this

o]]n] structure rule.

LDAP_SCHEMA_SUPERIOR SUP Defines all structure rules that this rule derives
from.

6.12 SSL Certificate Status Codes

These status codes are used by interactive ssl and the Idapssl_get cert_attribute (page 312) function.

Table 6-18 SSL Certificate Status Codes

Status

2 ERR_UNABLE_TO_GET_ISSUER_CERT
Unable to get issuer certificate

6 ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY
Unable to decode issuer public key

7 ERR_CERT_SIGNATURE_FAILURE
Certificate signature failure

9 ERR_CERT_NOT_YET_VALID
Certificate is not yet valid

10 ERR_CERT_HAS_EXPIRED
CRL is not yet valid

13 ERROR_IN_CERT_NOT_BEFORE_FIELD
Format error in certificate’s notBefore field

14 ERROR_IN_CERT_NOT_AFTER_FIELD
Format error in certificate’s notAfter field

18 DEPTH_ZERO_SELF_SIGNED_CERT

Self-signed certificate

436 NDK: LDAP Libraries for C

Status

19

20

21

24

25

26

27

28

SELF_SIGNED_CERT_IN_CHAIN
Self-signed certificate in certificate chain
UNABLE_TO_GET_ISSUER_CERT_LOCALLY
Unable to get local issuer certificate
UNABLE_TO_VERIFY_LEAF_SIGNATURE
Unabile to verify the first certificate
INVALID_CA

Invalid CA certificate
PATH_LENGTH_EXCEEDED

Path length constraint exceeded
INVALID_PURPOSE

Unsupported certificate purpose
CERT_UNTRUSTED

Certificate not trusted

CERT_REJECTED

Certificate rejected

Values 437

438 NDK: LDAP Libraries for C

Structures

This chapter describes the structures used by the LDAP functions.

Structures 439

BerElement

Contains an opaque data structure for data encoded with BER (Basic Encoding Rules).

Remarks

The LDAP libraries provide functions for creating and manipulating the data within the BerElement
structure, but clients do not need access to the fields in the structure.

For example, the ldap_first_attribute function creates a BerElement structure that tracks the current
position in the entry.

The ber_init function converts a BerElement structure to a berval structure, and the ber_flatten
function converts a berval structure to a BerElement structure.

440 NDK: LDAP Libraries for C

berval

Contains binary data that is encoded with simplified BER (Basic Encoding Rules).

Structure

typedef struct berval {
unsigned long bv len;
char *bv val;

}i

Fields

bv_len
Specifies the length of the data.

bv_val

Points to the encoded data.

Remarks

The ber _init function converts a BerElement structure to a berval structure, and the ber_flatten
function converts a berval structure to a BerElement structure.

Structures 441

DB_binary

Contains a binary debug event parameter value.

Structure

typedef struct DB binary {
unsigned int size;
void* data;

}i

Fields

size

The number of bytes in binary value.

data

An array of size number of bytes containing the binary data.

442 NDK: LDAP Libraries for C

DB_netAddress

Contains a net address debug event parameter value.

Structure

typedef struct DB netAddress {
unsigned int type;
unsigned int length;
charx* data;

}i

Fields
type
An integer value indicating the address type.

length
The length, in bytes of the address value.

data

The actual address value.

Structures 443

DB_Parameter

Contains debug parameters associated with debug events.

Structure

typedef struct DB Parameter {
int type;
DB value value;

}i

Fields

type
An integer that indicates the type of the parameter. It will be one of the following values:

Value Type

1 DB_PARAM_TYPE_ENTRYID
DB_PARAM_TYPE_STRING
DB_PARAM_TYPE_BINARY
DB_PARAM_TYPE_INTEGER
DB_PARAM_TYPE_ADDRESS
DB_PARAM_TYPE_TIMESTAMP

N OO o A~ W DN

DB_PARAM_TYPE_TIMEVECTOR

value

The DB_Value structure containing the actual parameter value.

444 NDK: LDAP Libraries for C

DB_timeStampVector

Contains a time stamp vector debug event parameter value.

Structure

typedef struct DB timeStampVector ({
unsigned int count;
EVT TimeStamp *timeStamps;
}i

Fields

count

The number of time stamps contained in the vector.

timeStamps

A pointer to an array containing count EVT_TimeStamp structures.

Structures 445

DB_value

Contains a value associated with debug events.

Structure
typedef union DB value {
int integer;
char * utf8Str;
EVT TimeStamp timeStamp;
DB netAddress netAddress;
DB binary binary;

DB timeStampVector timeStampVector;
}i

Fields

integer
Contains the integer value of the parameter if the type field of the DB_Parameter structure is
DB PARAM_TYPE INTEGER.

utf8Str
Contains a pointer to the UTF-8 encoded string value of the parameter if the type field of the
DB_Parameter structure is DB PARAM_TYPE STRING.

timeStamp
Contains the EVT TimeStamp value of the parameter if the type field of the DB_Parameter
structure is DB_ PARAM TYPE TIMESTAMP.

netAddress
Contains the DB_netAddress value of the parameter if the type field of the DB_Parameter
structure is DB_ PARAM TYPE ADDRESS.

binary
Contains the DB_binary value of the parameter if the type field of the DB_Parameter structure
is DB_ PARAM TYPE BINARY.

timeStamp Vector

Contains the DB_timeStamp Vector value of the parameter if the type field of the
DB Parameter structure is DB PARAM TYPE TIMEVECTOR.

446 NDK: LDAP Libraries for C

EVT_ AbandonEventData

Contains the data associated with Abandon operation with the LDAP Server.

Structure

typedef struct
{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
unsigned int operation;
char *bindDN;
int resultCode;
}EVT AbandonEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of the operation.

bindDN
Specifies the DN that binds with eDirectory.

operation
Specifies the operation, which is abandoned.
authMechanism

Specifies the SASL mechanism if the bindType is SASL.

resultCode
Set to the return code by the LDAP server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

Structures 447

EVT_AuthEventData

Contains the data associated with Bind/Unbind operation with the LDAP Server.

Structure

typedef struct

{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char *bindDN;
unsigned int bindType;
char *authMechanism;
char **controlOID;
int resultCode;

}EVT AuthEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of operation.

formatString

The format string used to create the string printed in the DS Trace utility. The format string
describes the string that is displayed by the DS Trace utility. It contains literal characters as
well as format characters that serve as place holder for parameter values. See the remarks for a
list of valid format characters.

bindDN
Specifies the DN that binds with eDirectory.

bindType
Specifies the bind type (simple/SASL).

authMechanism
Specifies the SASL mechanism if the bindType is SASL.

controlOID

Pointer to an array of strings representing the OIDs of the controls.

resultCode
Set to the return code by the LDAP server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

448 NDK: LDAP Libraries for C

EVT_BinderyObjectinfo

Contains information about a bindery object associated with an event.

Structure

typedef struct EVT BinderyObjectInfo {
char *entryDN;
unsigned int type;
unsigned int emuObjFlags;
unsigned int security;
char *name;

}i

Fields

entryDN
Specifies the DN of the Directory entry that is being created to represent the bindery object.

type
Specifies the bindery object type.

emuObjFlags
Specifies the bindery object flags.

security

Specifies the bindery object security.

name

Specifies the name of the bindery object.

Structures 449

EVT_ChangeConfigParm

Structure
typedef struct EVT ChangeConfigParm {
int type;
char *name;
union {
int integer;
int boolean;
char *utf8Str;
struct {
int size;
unsigned char* data;
} binary;
} value;

} EVT ChangeConfigParm;

Fields

type
indicates the type of the configuration parameters data.

Type Value
EVT_CFG_TYPE_NULL 0
EVT_CFG_TYPE_BINARY 1

EVT_CFG_TYPE_INT
EVT_CFG_TYPE_STRING

A W N

EVT_CFG_TYPE_BOOLEAN

name

name of the configuration parameter.

integer

If the value of type is EVT _CFG_TYPE INT, this contains the integer value of the
configuration parameter. This value is accessed using a pointer to the integer, such as data ->
value.integer.

boolean

If the value of type is EVT_CFG_TYPE_BOOLEAN, this contains the boolean value of the
configuration parameter (0 = false, 1 = true). This value is accessed using a pointer to the
boolean, such as data -> value.boolean.

450 NDK: LDAP Libraries for C

utf8str

If the value of type is EVT_CFG_TYPE STRING, this contains a pointer to the utf-8 string
value of the configuration parameter. This value is accessed using a pointer to the string, such
as data -> value.utf8str.

size
If the value of type is EVT_CFG_TYPE_BINARY, this contains the number of bytes in the

value of the configuration parameter. This value is accessed using a pointer to the size, such as
data -> value.binary.size.

data

If the value of type is EVT_CFG_TYPE BINARY, this contains a pointer to an arry of the
bytes in the value of the configuration parameter. This value is accessed using a pointer to the
array, such as data -> value.binary.data.

Structures 451

EVT_ChangeConnState

Contains information about a connection whose state is being changed.

Structure

typedef struct EVT ChangeConnState {
char *connectionDN;
unsigned int oldFlags;
unsigned int newFlags;
char* sourceModule;

}i

Fields

connectionDN

Specifies the DN of the entry associated with the connection.

oldFlags
Specifies the flag associated with the previous connection state, and is one of the following
values:
C Value Value Name

0x00000001 DSE_CONN_VALID
0x00000002 DSE_CONN_AUTHENTIC
0x00000004 DSE_CONN_SUPERVISOR
0x00000008 DSE_CONN_OPERATOR
0x00000010 DSE_CONN_LICENSED

0x00000020 DSE_CONN_SEV_[S_STALE
0x000000FF DSE_CONN_OPERATIONAL_FLAGS
0x00010000 DSE_CONN_CLEAR_ON_UNLOCK
0x00020000 DSE_CONN_LOCKED

0x00040000 DSE_CONN_CLEAR_ON_EVENT
0x000F0000 DSE_CONN_SECURITY_FLAGS

newkFlags

Specifies the flag that indicates the new connection state. Uses the same flags as oldFlags.

sourceModule

Specifies the module that caused the connection state to change.

452 NDK: LDAP Libraries for C

EVT_ChangeServerAddr

Structure

typedef struct EVT ChangeServerAddr {
unsigned flags;
int proto;
int addrFamily;
int addrSize;
unsigned char *addr;
char *pstkname;
char *sourceModule;

}i

Fields

flags

proto
addrFamily
addrSize
addr
pstkname

sourceModule

Remarks

Structures 453

EVT_CompareEventData

Contains the data associated with Compare operation with the LDAP Server.

Structure

typedef struct

{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char *bindDN;
char *compareDN;
char *assertionType;
char *assertionValue;
char *className;
int resultCode;

}EVT CompareEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of operation.

bindDN
Specifies the DN that binds with eDirectory.

bindDN
Specifies the DN that binds with eDirectory.

compareDN

Specifies the DN of the attribute to be compared.

assertionType
Specifies the name of the attribute to be compared.
assertionValue

Specifies the value of the attibute to be compared.

className

Specifies the class name of the object that was acted upon.

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

454 NDK: LDAP Libraries for C

EVT_ConnectionEventData

Contains the data associated with connection with the LDAP Server.

Structure

typedef struct
{

unsigned int connection;
unsigned int time;
char *inetAddr;

}JEVT ConnectionEventData;

Fields

connection

Specifies the connection ID for the connection.
time

Specifies the time of operation.

inetAddr

Specifies the inet address of the client, who has initiated the operation.

Structures 455

EVT Debuginfo

Contains data associated with debug events.

Structure

typedef struct EVT DebugInfo {
unsigned int dsTime;
unsigned int milliseconds;
char *perpetratorDN;
char *formatString;
int verb;
int paramCount;
DB Parameter *parameters;

}i

Fields

dsTime

Specifies the time the event occurred as the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time, according to the system clock.

milliseconds

The millisecond portion of the time the event occurred.

perpetratorDN
The DN of the object that caused this event.

formatString

The format string used to create the string printed in the DS Trace utility. The format string
describes the string that is displayed by the DS Trace utility. It contains literal characters as
well as format characters that serve as place holder for parameter values. See the remarks for a
list of valid format characters.

verb

The ID of the ds verb that was executing when the event occurred.

paramCount

The number of parameters specified in the format string.

parameters

A pointer to an array containing paramCount DB_Parameter structures. The parameters are in
the same order as the parameter characters in the format string.

Remarks
The formatString parameter is formatted according to the following:

$[flags] [width] [.precision] [L,1,h, !]type

456 NDK: LDAP Libraries for C

Element Description
flags -+ #0
width An optional integer indicating the width of the displayed value
precision An optional integer indicating the precision of the displayed value
L, I, h,! a character indication the size of the parameter, one of the following values:
¢ L: DOUBLE_FLAG
¢ |: LONG_FLAG
¢ h: SHORT_FLAG
+ 11 164_FLAG
type A character indicating the data type of the parameter, one of the following values:

C: color (no associated parameter)
: current time (no associated parameter)
string, EVT_TAG_DB_STRING
: network address
: string, EVT_TAG_DB_STRING
time stamp
: time stamp vector
: string, EVT_TAG_DB_STRING
: binary data
: hex integer, EVT_TAG_DB_INTEGER
: verb number, EVT_TAG_DB_INTEGER
: unsigned decimal integer, EVT_TAG_DB_INTEGER
: octal integer, EVT_TAG_DB_INTEGER
error code value, EVT_TAG_DB_INTEGER
: normal decimal integer, EVT_TAG_DB_INTEGER
: single character, EVT_TAG_DB_INTEGER
: raw memory pointer, EVT_TAG_DB_INTEGER
X: HEX integer, EVT_TAG_DB_INTEGER
E: error code value, EVT_TAG_DB_INTEGER

—

L0

ownw<dcC

TOQ®OoCc < X

Structures 457

EVT_Entryinfo

Contains data associated with state changes on individual entries in the directory.

Structure

typedef struct EVT EntryInfo {
char *perpetratorDN;
char *entryDN;
char *className;

unsigned int verb;
unsigned int flags;

EVT TimeStamp creationTime;
char *newDN;

}i

Fields

perpetratorDN
Specifies the DN of the entry that caused the event.

entryDN
Specifies the DN of the entry that was acted upon.

parentDN
Specifies the parent DN of the acted upon entry.

className

Specifies the DN of the object that was acted upon.

verb
Specifies the action that caused the event to occur.
flags

creationTime

newDN
Specifies the new DN of the entry that was acted upon.

458 NDK: LDAP Libraries for C

EVT_EventData

Contains data associated with general DS events. The meaning of this structure's content is

dependent on the type of event.

Structure

typedef struct EVT EventData {
unsigned int dstime;
unsigned int milliseconds;

unsigned int curProcess;
unsigned int verb;
char *perpetratorDN;
unsigned int intValues[4];
char strValues([4];
}i
Fields
dstime

Specifies the time in milliseconds when the event occurred.

milliseconds

curProcess

Specifies the process that was running when the event occurred.

verb

Specifies the action that caused the event to occur.

perpetratorDN
Specifies the DN of the entry that caused the event.

intValues

Contains event data determined by the event type

strValues

Contains event data determined by the event type.

Structures 459

EVT_EventSpecifier

Contains information about a single event to monitor.

Structure

typedef struct EVT EventSpecifier {
int eventType;
int eventStatus;

}i

Fields

eventType

Specifies an event type to monitor. For a complete listing of events, see “LDAP Event
Services” in the LDAP and eDirectory Integration Guide.

eventStatus

Specifies the event status for which you would like to be notified. This can be one of the
following values:

Status Value
EVT_STATUS_ALL 0
EVT_STATUS_SUCCESS 1
EVT_STATUS_FAILURE 2

EVT _STATUS ALL causes all events to be reported regardless of status.
EVT _STATUS SUCCESS causes only events with a successful result to be reported.
EVT_STATUS FAILURE causes only events with a failure result to be reported.

460 NDK: LDAP Libraries for C

EVT_ExtOpEventData

Contains the data associated with Extended operation with the LDAP Server.

Structure

typedef struct
{

EVT ConnectionEventData *connectionData;
unsigned int msgID;

unsigned int time;

unsigned int operation;

char *extensionOID;

char *bindDN;

int resultCode;

}EVT ExtOpEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of the operation.

operation

Specifies the type of the extension operation.

extensionOID

Specifies the OID of the extension operation.

bindDN
Specifies the DN that binds with eDirectory.

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

Structures 461

EVT_FilteredEventSpecifier

Contains information about a single event to monitor, including a filter used by the server to limit
returned events.

Structure

typedef struct EVT FilteredEventSpecifier ({
int eventType;
int eventStatus;
char* filter;

}i

Fields

eventType
Specifies an event type to monitor. For a complete listing of events, see “LDAP Event
Services” in the LDAP and eDirectory Integration Guide.

eventStatus

Specifies the event status for which you would like to be notified. This can be one of the
following values:

Status Value
EVT_STATUS_ALL 0
EVT_STATUS_SUCCESS 1
EVT_STATUS_FAILURE 2

EVT _STATUS ALL causes all events to be reported regardless of status.
EVT _STATUS SUCCESS causes only events with a successful result to be reported.
EVT_STATUS FAILURE causes only events with a failure result to be reported.

filter

Specifies a filter to limit events returned by the server. This event filter is patterned after the
string representation of an LDAP search filter, and can filter based on any of the parameters
returned in an event structure. See the remarks for additional information.

Remarks

An event filter is patterned after the string representation of an LDAP search filter. An event filter is
contained in parenthesis "()", and can filter events based on one or more values returned by an
event.

For example, a value event (a change to an attribute value) returns the following nine parameters in
an EVT_Valuelnfo structure:

462 NDK: LDAP Libraries for C

verb
perpetratorDN
entryDN
attributeName
syntaxOID
className
timeStamp
size

value

When monitoring a value event, you can specify a filter based on one or more of the the nine values
returned by this event.

For example, the following event filter causes the server to return only value events where the acted
upon attribute is a title:

(attributeName=title)

More complex event filters can be created using the same syntax as LDAP search filters.

(& (entryDN=cn=userl, o=system) (perpetratorDN=cn=admin, o=system) (attributeName=fullN
ame))

(| (attributeName=modifiersName) (& (entryDN=cn=userl, o=system) (perpetratorDN=cn=admi
n,o=system) (attributeName=fullName)))

For additional information on LDAP search filters see “Using Search Filters” on page 37.

Structures 463

EVT_ModDNEventData

Contains the data associated with Modify DN operation with the LDAP Server.

Structure

typedef struct
{

EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char *bindDN;
char *o0ldRDN;
char *newRDN;
char *className;
char **controlOID;
int resultCode;
}EVT ModDNEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of the operation.

bindDN
Specifies the DN that binds with eDirectory.

oldRDN
Points to the old relative distinguished name of the entry.

newRDN

Points to the new relative distinguished name to give the entry.

className

Specifies the class name of the object that was acted upon.

controlOID

Pointer to an array of strings representing the OIDs of the controls.

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

464 NDK: LDAP Libraries for C

EVT_ModuleState

Contains information about an eDirectory module state that is being changed.

Structure
typedef struct EVT ModuleState {
char *connectionDN;
unsigned flags;
int module;
int source;
char name [EVT MAX MODULE NAME];
char description[EVT MAX MODULE DESCR];
}i
Fields
connectionDN

Specifies the DN of the entry associated with the connection.

flags

The least significant byte of the flags field contains module attribute flags. The next byte
contains event subtype flags. They indicate the type of module event in progress. The values
for flags field are contained in the following table:

0x0001 DSE_MOD_HIDDEN
0x0002 DSE_MOD_SYSTEM
0x0004 DSE_MOD_ENGINE
0x0008 DSE_ MOD AUTOMATIC
0x00FF DSE_MOD_FILE MASK
0x0100 DSE_MOD_POSTEVENT
0x0200 DSE_MOD_AVAILABLE
0x0400 DSE_ MOD_LOADING
0x0800 DSE_ MOD MODIFY
0x8000 DSE_MOD_NEGATE BIT
0xFF00 DSE_ MOD _EVENT MASK
The NEGATE_BIT negates the meaning of the other event type flags. For example, the

DSE MOD LOADING flag is set along with the DSE MOD NEGATE BIT to indicate the
module is unloading.

module

Target module for this event.

source

Specifies the affecting module

name

Module name

Structures 465

description

Specifies the name and description of the target module.

466 NDK: LDAP Libraries for C

EVT_NetAddress

Contains a network address associated with a DSEvent.

Structure

typedef struct EVT NetAddress {
unsigned int type;
unsigned int length;
char datall];

}i

Fields

type
Specifies the type of the address. Can be one of the following values:
¢ NT IPX
¢ NT IP
+ NT SDLC
¢+ NT TOKENRING ETHERNET
+ NT OSI
¢ NT APPLETALK
¢ NT COUNT

length

Specifies the number of bytes in which the address is stored.

data
A char array of bytes [length] long, containing the network address.
Remarks

The address is stored as a binary string. This string is the literal value of the address. To display it as
a hexadecimal value, you must convert each 4-bit nibble to the correct character (0,1,2,3,...F).

For two net addresses to match, the type, length, and value of the addresses must match.

Structures 467

EVT_PasswordModifyEventData

Contains the data associated with password modify operation with the LDAP Server.

Structure

typedef struct
{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char* bindDN;
char* entryDN;
int passwordModifyType;
int resultCode;
}JEVT PasswordModifyEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.

msgID

Specifies the message ID of the operation.
time

Specifies the time of the operation.

bindDN
Specifies the DN that binds with eDirectory.

entryDN
Specifies the DN of the entry that was acted upon.

passwordModifyType
Specifies the type of password modification, which can have the following values:
¢ 1 - password add
¢ 2 - password generated

¢ 3 - password modified

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

468 NDK: LDAP Libraries for C

EVT_ReferralAddress

Structure

typedef struct EVT ReferralAddress ({
int type;
int length;
char *address;

}i

Fields

type

indicates the address type.

length
length of the referral address.

address

Pointer to the address.

Structures 469

EVT_ResponseEventData

Contains the data associated with LDAP Response of operations Bind, Search Entry, Add, Modify,
Delete, Modify DN, and Extension operation.

Structure

typedef struct
{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
unsigned int operation;
int resultCode;
char *matchedDN;
char *referral;
}EVT ResponseEventData;

Fields

connectionData

Pointer to a EVT _ConnectionEventData structure, which contains the connection data.

msgID

Specifies the message ID of the operation.
time
Specifies the time of operation.

operation

Specifies the type of the operation, which generated this response.

resultCode
Set to the return code by the LDAP server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

matchedDN

referral

470 NDK: LDAP Libraries for C

EVT_SearchEventData

Contains the data associated with Search operation with the LDAP Server.

Structure

typedef struct
{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char *bindDN;
char *base;
unsigned int scope;
char *filter;
char **attrs;
char **controlOID;
int resultCode;
}JEVT SearchEventData;

Fields

connectionData

Pointer to a EVT ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of operation.

bindDN
Specifies the DN that binds with eDirectory.

base

The base parameter specifies the container in the directory, where the search begins.
scope

The scope parameter specifies the depth to search.

It can be LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL, LDAP_SCOPE_SUBTREE,
or LDAP SCOPE_SUBORDINATESUBTREE.

filter

The search filter specifies what you are searching for.

attrs

The attribute parameter specifies which attributes to return with each matching entry.

controlOID

Pointer to an array of strings representing the OIDs of the controls.

Structures 471

resultCode
Set to the return code by the LDAP server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

472 NDK: LDAP Libraries for C

EVT_SearchEntryResponseEventData

Contains the data associated with response per entry of a Search operation with the LDAP Server.

Structure

typedef struct
{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
char* entryDN;
char* className;
char **attrs;
int resultCode;
}EVT SearchResponseEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.
msgID

Specifies the message ID of the operation.
time

Specifies the time of operation.

entryDN
Specifies the DN of the entry that was acted upon.

className

Specifies the object class name of the object that was acted upon.

base

The base parameter specifies the container in the directory, where the search begins.

attrs

The attribute parameter specifies which attributes to return with each matching entry.

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

Structures 473

EVT_SEVinfo

Contains a Security Equivalence Vector associated with a DSEvent.

Structure

typedef struct EVT SEVInfo ({
char *entryDN;
unsigned int retryCount;
char *valueDN;
int referralCount;

EVT ReferralAddress *referrals;
}i

Fields

entryDN

Specifies the DN of the Directory object whose Security Equivalence Vector (SEV) is being
checked.

retryCount

Reserved

valueDN
Specifies the DN of an object or group being checked.

referralCount

Specifies the number of referrals in the referrals parameter.

referrals

Pointer to an array of EVT ReferralAddress (page 469) structures.

474 NDK: LDAP Libraries for C

EVT_SysExtOpEventData

Contains the data associated with LDAP System Extensions operation with the LDAP Server.

Structure

typedef struct

{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time;
unsigned int operation;
char *extensionOID;
char *bindDN;
char *valuel;
char *value2;
char *value3;
char *valued;
int resultCode;

}EVT SysExtOpEventData;

Fields
connectionData
Pointer to a EVT ConnectionEventData structure, which contains the connection data.

msgID

Specifies the message ID of the operation.
time

Specifies the time of the operation.

operation

Specifies the type of the system extension operation.

extensionOID

Specifies the OID of the system extension operation.

bindDN
Specifies the DN that binds with eDirectory.
valuel

value2

value3

Structures 475

value4

resultCode
Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

476 NDK: LDAP Libraries for C

EVT_TimeStamp

Contains a time stamp associated with an event.

Structure

typedef struct EVT TimeStamp {
unsigned int seconds;
unsigned short replicaNumber;
unsigned short event;

}i

Fields

seconds
Specifies in seconds when the event occurred. Zero equals 12:00 midnight, January 1, 1970,
UTC.

replicaNumber

Specifies the number of the replica on which the change or event occurred.

event

Specifies an integer that further orders events occurring within the same whole-second interval.
Remarks
Two time stamp values are compared by comparing the seconds fields first and the event fields
second. If the seconds fields are unequal, order is determined by the seconds field alone. If the

seconds fields are equal, and the eventID fields are unequal, order is determined by the eventID
fields. If the seconds and the event fields are equal, the time stamps are equal.

Structures 477

EVT_UnknownEventData

Contains the data associated with Unknown operation with the LDAP Server.

Structure

typedef struct
{

unsigned int time ;
char *inetAddr;
}EVT UnknownEventData;

Fields

time

Specifies the time of the operation.

inetAddr

Specifies the inet address of the client, who initiated the operation.

478 NDK: LDAP Libraries for C

EVT_UpdateEventData

Contains the data associated with Add/Modify/Delete operation with the LDAP Server.

Structure

typedef struct

{
EVT ConnectionEventData *connectionData;
unsigned int msgID;
unsigned int time ;
unsigned int operation;
char *bindDN;
char *entryDN;
char *className;
char **controlOID ;
int resultCode;

}EVT UpdateEventData;

Fields

connectionData

Pointer to a EVT_ConnectionEventData structure, which contains the connection data.

msgID

Specifies the message ID of the operation.
time

Specifies the time of operation.

operation

Specifies the type of request: Add, Delete, or Modify.

bindDN
Specifies the DN that binds with eDirectory.

entryDN
Specifies the DN of the entry that was acted upon.

className

Specifies the class name of the object that was acted upon.

controlOID

Pointer to an array of strings representing the OIDs of the controls.

resultCode

Set to the return code by the LDAP Server.

resultCode is zero if the operation is success, and non-zero if the operation is failure.

Structures 479

EVT_Valuelnfo

Contains data associated with changes to individual attributes.

Structure

typedef struct EVT ValueInfo {
unsigned int verb;

char *perpetratorDN;
char *entryDN;
char *attributeName;
char *syntaxOID;
char *className;
EVT TimeStamp timeStamp;
unsigned size;
char *value;

}i

Fields

verb

Specifies the action that caused the event to occur.

perpetratorDN
Specifies the DN of the entry that caused the event.

entryDN
Specifies the DN of the entry that was acted upon.

attributeName

Specifies the DN of the attribute that was acted upon.

syntaxOID
Specifies the Syntax OID of the entry that was acted upon.

className

Specifies the DN of the object that was acted upon.

timeStamp

size

Specifies the size (in bytes) of the information stored in the location identified by value.

value

Specifies the information that further identifies the changes that were made.

480 NDK: LDAP Libraries for C

LBURPUpdateResult

Contains the result set of an LBURP operation.

Structure

typedef struct lburpupdateresult ({ int sequenceNumber; int resultCode;
char *errorMsg;} LBURPUpdateResult;

Fields

sequenceNumber

Points to the sequence number used to specify the ordering of the LBURP operation.

resultCode

Points to the response code from the server.

errorMessage

Points to the error message from the server, may be NULL if no error messages are requested.

Structures 481

LBURPUpdateOperationList

Contains the modifications to make to an entry.

Structure

typedef struct lburpoperationlist { int operation; char *dn; union {
LDAPMod **attrs; char *newRDN; int deleteOldRDN; char
*newSuperior; }value; LDAPControl **Servercontrols; LDAPControl

**Clientcontrols;} LBURPUpdateOperationList;

Fields

operation

Specifies the type of modification operation.

LDAP_REQ_ADD Indicates an add operation.
LDAP_REQ_DELETE Indicates a delete operation.
LDAP_REQ_MODIFY Indicates a modify operation.
LDAP_REQ_MODRDN Indicates a modify RDN operation.
dn
Points to the distinguished name of the entry.
attrs
Points to a NULL terminated array of LDAPMod structures that contain the attributes and
valus of the entry. All mandatory attributes must have values or the operation fails.
newRDN
Points to the new relative distinguished name for the entry. The entry’s parent must remain the
same. Applies to the MOD RDN operation only.
deleteOldRDN
Points to whether to delete the old RDN or not. Applicable to MOD RDN operation only
newSuperior
New superior DN.
Servercontrols
Points to an array of LDAPControl structures that list the server controls to use with the
operation. Use NULL to specify no server controls.
Clientcontrols

Points to an array of LDAPControl structures that list the client controls to use with the
operation. Use NULL to specify no client controls.

482 NDK: LDAP Libraries for C

LDAP

Contains an opaque data structure for LDAP session handle information.

Remarks

All LDAP operation functions require the client to use an LDAP structure with the request.The
LDAP structure contains session specific data about the connection to the LDAP server.

The LDAP library does not allow the client to directly manipulate the data in this session handle.

Instead, it provides the following functions for various tasks.

Task Function

Create Idap_init or Idap_open

View settings Idap_get_option

Modify settings Idap_set option

Delete Idap_unbind, Idap_unbind_s, Idap_unbind_ext

For a list of the options that can be viewed or set, see Section 6.10, “Session Preference Options,” on

page 425.

Structures 483

LDAP_DIGEST MD5 CONTEXT

Contains an opaque data structure for Digest-md5 data.

Remarks

This structure is used by Idap bind digest md5_start (page 91), Idapssl install routines
(page 164), and ldap bind digest md5_finish (page 93) to contain Digest-MD5 data.

484 NDK: LDAP Libraries for C

LDAPAPIFeaturelnfo

Contains version information about the LDAP API extended features.

Structure

typedef struct ldap apifeature info {
int ldapaif info version;
char *ldapaif name;
int ldapaif version;

} LDAPAPIFeaturelInfo;

Fields

Idapaif info version
Specifies the version of the LDAPAPIFeaturelnfo structure.

ldapaif name

Points to the name of the supported feature.

Idapaif info version

Specifies the revision of the supported feature.

Remarks

Structures 485

LDAPAPIInfo

Contains information about the vendor's implementation of the LDAP APIL

Structure

typedef struct ldapapiinfo {

int ldapai info version;
int ldapai api version;
int ldapai protocol version;
char **ldapai_ extensions;
char *ldapai vendor name;
int ldapai vendor version;
} LDAPAPIInfo;
Fields

Idapai_info_version

Specifies the version of the LDAPAPIInfo structure.
Idapai_api_version

Specifies the revision of the API supported.

Idapai_protocol _version

Specifies the highest LDAP version supported by the LDAP library.

Idapai_extensions

Points to a NULL-terminated array of character strings that names the vendor's LDAP
extensions. If no API extensions are supported, this field is set to NULL. The application is
responsible for freeing this memory by calling the Idap value free function.

Idapai_vendor name

Points to the vendor's name. The application is responsible for freeing this memory by calling
the Idap_memfree function.

Idapai_vendor_version

Specifies the vendor's version of the LDAP libraries.

Remarks

To retrieve more information about an extension (the ldapai_extensions field), call the
ldap get option function with the option parameter set to LDAP_OPT_API FEATURE INFO.

486 NDK: LDAP Libraries for C

LDAPControl

Contains data about an LDAP control.

Structure
typedef struct ldapcontrol {
char *ldctl oid;
struct berval ldctl value;
char ldctl iscritical;

} LDAPControl;

Fields

Idctl_oid
Points to the string object identifier (OID) assigned to the control.

Idctl_value

Specifies a berval (page 44 1) structure that contains the data, if any, associated with the control.
The Idctl_value field can contain no data.

¢ To indicate a zero-length value, set Idctl value.bv_len to zero and ldctl value.bv_val to a
zero-length string.

¢ To indicate that no data is associated with the control, set Idctl value.bv_val to NULL.

Idctl_iscritical
Specifies whether the control is critical to the operation.

+ [f this field is non-zero, the operation fails if the LDAP server doesn't recognize the
control.

+ If this field is set to zero, the LDAP can continue the operation when it doesn't recognize
the control.

Remarks

Structures 487

LDAPMessage

Contains an opaque data structure for the results of an asynchronous LDAP operation or a search
operation.

Remarks

The following functions create either an LDAPMessage structure or an array of LDAPMessage
structure.

¢ Search functions: ldap_search_ext s, ldap _search_ext, Idap_search, Idap_search_s, and
ldap_search_st

+ Asynchronous operations that require ldap_result to read the results such as ldap _add and
ldap_add_ext, ldap _compare and ldap _compare ext, ldap delete and Idap delete ext,
ldap_modify and Idap_modify ext

Use the ldap _msgfree function to free the LDAPMessage structure.

488 NDK: LDAP Libraries for C

LDAPMod

Contains the modifications to make to one attribute of an entry.

Structure

typedef union mod vals u {
char **modv_strvals;
struct berval *mod bvals;

} mod vals u t;

typedef struct ldapmod {

int mod op;
char *mod_type;
mod vals u t mod vals;

#define mod values mod vals.modv strvals
#define mod bvalues mod vals.modv bvals
} LDAPMod;

Fields

mod_op
Specifies the type of modification operation.

+ LDAP_MOD_ADD (0x0000)—adds the value, adding the attribute if no values current
exist.

+ LDAP_MOD_DELETE (0x0001)—deletes the specified values, removing the attribute
no values remain.

+ LDAP MOD REPLACE (0x0002)— replaces the current values with the specified
values, adding the attribute if no values currently exist and removing the attribute if the
specified value's field is NULL.

+ LDAP_MOD_BVALUES (0x0080)—specifies binary values. If the mod_vals structure
contains binary values, this flag should be ORed to one of the other flags to specify a
binary modification. If this flag is not ORed, the default is to assume string value
modifications.

mod_type

Points to the name of attribute to modify.

modv_strvals

ly

if

Points to a NULL-terminated array of string values for the attribute. This field cannot contain

values if the modv_bvals field contains values.

modv_bvals

Points to a NULL-terminated array of berval structures which are used to modify an attribute's

binary values. This field cannot contain values if the modv_strvals field contains values.

Structures 489

Remarks

If mod_op is set to an operation flag with LDAP MOD BVALUES ORed to it, the modv_strvals
should be empty. [f LDAP_MOD_BVALUES is not ORed to the operation flag, the modv_strvals
should contain the values for the modification operation.

Either the attribute contains string or binary values. Select the one that matches the attribute's
syntax.

490 NDK: LDAP Libraries for C

LDAPReplicalnfo

Contains information about a replica.

Service: LDAP

Defined In: ldapx.h

Structure

typedef struct ldapreplicainfo ({

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
char

LDAP REPLICA TYPE
unsigned long

} LDAPReplicalInfo;

Fields

rootID

Contains the entry ID of the naming context (replica) root object on the local server.

state

Contains the current state of the replica (see Section 6.5, “Replica States,” on page 421).

modificationTime

Contains the time for the most recent modification to the replica.

purgeTime

Contains the time at which all data has been synchronized. Data scheduled for deletion, that

rootID;

state;
modificationTime;
purgeTime;
localReplicalD;
namingContextDN[2*256] ;
replicaType;

flags;

predates this time, can now be deleted.

localReplicalD

Contains the local server's identifier for the replica.

namingContextDN

Contains the distinguished name of the naming context (replica).

replicaType

Contains the replica's type (see Section 6.7, “Replica Types,” on page 423).

flags

Indicates whether the replica is busy performing an operation or not. Uses the following flags:

LDAP DS_FLAG_BUSY (0x01)

1 indicates busy, 0 indicates not busy.

Structures 491

LDAPSchema

Contains an opaque data structure for schema information.

Remarks

LDAPSchema represents a local copy of an LDAP Directory schema. This structure is needed to
locate, modify, and delete schema definitions.

492 NDK: LDAP Libraries for C

LDAPSchemaElement

Contains an opaque data structure for a single schema definition.

Remarks

An LDAPSchemaElement represents one of eight possible schema definition types described in
Section 6.11, “Schema Element Types,” on page 430.

Structures 493

LDAPSchemaMod

Contains the definition of one field in a schema definition.

Structure

typedef struct ldap schema mod {
int op;
char *fieldName;
char **yvalues;

}i

Fields

op

Indicates whether the values are to add to, replace, or delete from the existing values of a field,
and is one of the following values:

+ LDAP_MOD_ADD
+ LDAP_MOD _DELETE
+ LDAP_MOD REPLACE

fieldName

Identifies the name of the field. Macros for standard field names are defined in Section 6.11,
“Schema Element Types,” on page 430.

values
A NULL-terminated array of strings, containing the values that correspond to the field name.

Remarks

A NULL-terminated array of LDAPSchemaMod structures represent all fields to be included in a
new definition, or all fields to be modified in an existing definition. A field value can be added,
replaced or deleted.

494 NDK: LDAP Libraries for C

LDAPSortKey

Contains information about a sort key.

Structure

typedef struct ldapsortkey {
char attributeType;
char *orderingRule;
int reverseOrder;

} LDAPSortKey;

Fields

attributeType

Points to the name of the attribute to use for sorting.

orderingRule

Points to the OID of the ordering rule to use for the sorting. eDirectory does not support

ordering rules.

reverseOrder

Specifies whether to sort results in reverse order:

+ Non-zero indicates that the results are sorted in reverse order (large to small). eDirectory

does not support this type of sort.

¢ Zero indicates that the results are sorted in forward order (small to large)

Structures 495

LDAPSSL_Cert

Contains SSL certificate information.

Structure

typedef struct LDAPSSL Cert ({
unsigned long length;
void *data;

Fields

length
The length of the memory pointed to by data.

data
Points to memory allocated by the application for the certificate information.
Remarks

The LDAPSSL_Cert structure is used by ldapssl get cert (page 310). After retrieving the
certificate, the structure can be passed into Idapssl_add trusted cert (page 308) to add the certificate
to the list of trusted certificates.

496 NDK: LDAP Libraries for C

LDAPSSL_Cert_Validity Period

Contains the earliest and latest times that a certificate is valid.

Structure

typedef struct LDAPSSL Cert Validity Period {
char notBeforeTime [40];

int notBeforeType;
char notAfterTime[40];
int notAfterType;

}

Fields

notBeforeTime

A string representation of the first time that the certificate should be considered valid.

notBeforeType
The type of the notBeforeTime parameter. The time can be represented as universal time string
or a generalized time string. (LDAPSSL_CERT UTC_TIME or
LDAPSSL _CERT _GEN _TIME).

notAfterTime

A string representation of the expiration time of the certificate.

notAfterType

The type of the notAfterTime parameter. The time can be represented as universal time string
or generalized time string. (LDAPSSL CERT _UTC_TIME or
LDAPSSL_CERT GEN_TIME)

Remarks

Generalized Time Format. generalized time represents the values of year, month, day, hour,
minutes, seconds and fractions of a second in any of three forms:

¢ Local time "YYYYMMDDHHMMSS. fff", where fff is optional and is fractions of a second

¢ Greenwich Mean Time (UTC) "YYYYMMDDHHMMSS.fffZ", Z indicates Greenwich Mean
Time
+ Difference between local and UTC time, "YYYYMMDDHHMMSS.fff+-HHMM", the

+HHMM or -HHMM represents the time differential between the local and Greenwich Mean
Times.

UTC Time Format. UTC format represents the values of year (2 digit), month, day, hour, minutes
and optionally seconds.

¢ Local time "YYMMDDHHMMSS", where seconds (SS) is optional

Structures 497

¢ Greenwich Mean Time (UTC), "YYMMDDHHMMSSZ", seconds (SS) is optional and Z
represents Greenwich Mean Time

¢ Difference between local and UTC time, "YYMMDDHHMMSS+-HHMM", seconds (SS) is
optional and +HHMM or -HHMM represents the time differential between local and
Greenwich Mean Times.

498 NDK: LDAP Libraries for C

LDAPURLDesc

Contains URL information and the parameters for the search operation.

Structure

typedef struct ldap url desc {
struct ldap url desc *lud next;

char *lud scheme;
char *lud host;
int lud port;

char *lud dn;
char **lud attrs;

int lud scope;
char *lud filter;
char **lud exts;
char lud crit exts;
} LDAPURLDesc;
Fields
lud_next

Points to the next URL.

lud_scheme
Specifies the URL scheme (either Idap or 1daps).

lud_host
Points to the name of the host as a dotted IP address or DNS format.

lud_port
Specifies the port from the URL.

lud_dn
Points to the distinguished name of the base entry from the URL.

lud_attrs
Points to a NULL-terminated list of attributes specified in the URL.

lud_scope
Specifies the scope in the URL and uses one of the following flags.
¢+ LDAP_SCOPE BASE (0x00)—searches the entry specified by the base parameter.

¢+ LDAP _SCOPE _ONELEVEL (0x01)—searches the entry specified by the base parameter
and one level beneath that entry.

+ LDAP_SCOPE_SUBTREE (0x02)—searches the entire subtree starting with the entry
specified by the base parameter.
lud_filter
Points to the search filter specified in the URL.
If NULL is passed, a default filter ("objectclass=*") is used.

Structures 499

lud_exts

Points to a NULL-terminated list of the extensions specified in the URL.

lud_crit_exts

Specifies whether or not any critical extensions are included.

500 NDK: LDAP Libraries for C

LDAPVLVInfo

Contains state information associated with a series of virtual list view interactions between a client
and an LDAP server.

Structure

typedef struct ldapvlvinfo {
int ldvlv version;
unsigned long ldvlv before count;
unsigned long ldvlv_after count
unsigned long ldvlv offset;
unsigned long ldvlv_count;
struct berval *ldvlv attrvalue;
struct berval *1ldvlv_context;
void *ldvlv extradata;

} LDAPVLVInfo;

Fields

Idvlv_version

Specifies the version of this structure, which is currently 1.

Idvlv_before count

Specifies the number of entries before the target entry that the client wants the server to return.

Idvlv_after count

Specifies the number of entries after the target entry that the client wants the server to return.

Idvlv_offset

Specifies the target entry's position in the list. This parameter is used in connection with the
ldvlv_count field, but is used only if the ldvlv_attrvalue field is NULL.

Idvlv_count

Specifies the total number of entries in the list. This parameter is used in connection with the
Idvlv_offset field, but is used only if the Idvlv_attrvalue field is NULL. The following values
have special consequences:

¢ [fthe ldvlv_count field is set to 0, the Novell LDAP server returns the entry specified by
the Idvlv_offset parameter and sets this field to the number of entries currently in the list.

¢ If the value of the Idvlv_count field does not match the current number of entries in the
list, the Novell LDAP server assumes that the ldvlv_offset parameter is relative to
ldvlv_count. For example, if the list contains 10,000 entries and you specify the count as
500 and the offset as 250, the middle entry of the list is returned which, in this case, is
entry number 5,000.

Idvlv_attrvalue

Points to the attribute value that the target entry's attribute is equal to or greater than. This can
be used as a typedown value. For example, if the value specified is abc, the target entry will be
the first entry in the list with abc, or if no abc entries exist, the first entry with abd. If this field
is NULL, the ldvlv_offset and 1dvlv_count fields are used to select the target entry.

Structures 501

Idvlv_context

Points to server-specific data. On the first call, set this field to NULL. The server returns data
that helps the server track who you are and where you are in the list. The context obtained from
calling the ldap_parse vlv_control function should be used as the context in the next

Idap _create vlv_control call.

Idvlv_extradata

Reserved for application specific data. The virtual list view control does not use this field.

502 NDK: LDAP Libraries for C

timeval

Contains timeout values for search requests.

Structure

typedef struct timeval {
long tv_sec;
long tv_usec;

}i

Fields

tv_sec

Specifies the number of seconds for the time interval component.

tv_usec

Specifies the number of microseconds for the time interval component.

Remarks

These fields are used to determine the timeout value for both the LDAP server and the LDAP client
libraries:

¢ [fthe server timeout expires before the server finishes the search operation, the server returns
LDAP TIMELIMIT _EXCEEDED to the application.

¢ [fthe client timeout expires before the server returns, the client returns LDAP_TIMEOUT to
the application and sends an Idap_abandon to the server.

These fields have the following meanings for the timeout value for the LDAP server.

Field Values Description

tv_sec=0; tv_usec>0 Sends a timeout value of one second to the server.

tv_sec>0; tv_usec>=0 Sends the tv_sec value to the server. The server ignores the
tv_usec field.

The fields have the following meaning for a client timeout value.

Field Values Description

tv_sec>=0; tv_usec>=0 Waits the time specified by the combination of the tv_sec
and tv_usec fields.

The following table shows potential values for the fields and the timeout value that is computed for
the server and the client.

Structures

503

Field Values Server Timeout Value Client Timeout Value

tv_sec=0; tv_usec=1 1 second 1 microsecond
tv_sec=1; tv_usec=500000 1 second 1.5 seconds
tv_sec=2; tv_usec=0 2 seconds 2 seconds

Only one of the fields can be set to zero. When both the tv_sec and tv_usec fields are set to zero,
LDAP returns LDAP_ PARAM_ERROR.

504 NDK: LDAP Libraries for C

Source Code Contributors

Novell would like to acknowledge the following for contributing source code to the ldapsdk.*
library:
¢ Copyright 1998, 1999 The OpenLDAP Foundation, Redwood City, CA All rights reserved.
¢ Copyright © 1990, 1995 Regents of the University of Michigan. All rights reserved.
¢ Copyright © 1987 Regents of the University of California
¢ Copyright © 1991 by the Massachusetts Institute of Technology
¢ Copyright © 1994 Enrique Silvestre Mora, Universitat Jaume I, Spain.
+ Copyright © 1992, 1993, 1994 Henry Spencer.
¢ Copyright © 1992, 1993, 1994 The Regents of the University of California.
¢ Copyright © 1997, 1998, 1999 Computing Research Labs, New Mexico State University
¢ Copyright © 1999 PADL Software Pty Ltd.

For the complete text of these copyright notices, view the source code from OpenLDAP (http://
www.openldap.org).

Source Code Contributors 505

http://www.openldap.org

506 NDK: LDAP Libraries for C

Revision History

The following table outlines all changes made to the LDAP Libraries for C documentation (in
reverse chronological order):

July 2008 Added new structures for the LDAP Auditing feature to the Structures chapter.

October 2007 Added a new LDAP extension function Idap_nds_to x500_dn (page 372).

June 2007 Added 2 new standard LDAP functions Idap_nmas_err2string (page 209) and
Idap_nmas_get_errcode (page 211).

February 2007 Added information about new 64-bit support for Windows* and Linux*
platforms.

June 2006 Added information to the subsection “GSSAPI” on page 31,in the
Section 1.3.2, “Authentication,” on page 28

March 2006 Fixed formatting issues.

October 2005 Added the following:

+ Information on Section 1.2.6, “Setting and Getting the Cipher Level,” on
page 23.

+ 3 new session preference options, “LDAP_OPT_CURRENT_NAME” on
page 426, “LDAP_OPT_PEER_NAME” on page 428, and
“LDAP_OPT_TLS_CIPHER_LIMIT” on page 430.

+ Maximizing the security over the LDAP servers Section 1.3.5,
“Recommendations,” on page 33.

Removed all instances of LDAPSSL_VERIFY_NONE option.
June 2005 Added the following:
+ A new search scope, LDAP_SCOPE_SUBORDINATESUBTREE (page
26).
+ |dap_create_geteffective_control (page 121).
+ |dap_create_reference_control (page 125).
+ |dap_create_sstatus_control (page 130).
* |dap_parse_reference_control (page 222).
+ |dap_parse_sstatus_control (page 231).
March 2005 + Added 2 new standard LDAP functions, Idap_cancel_ext (page 99) and
Idap_cancel_ext_s (page 101).

¢ Changed the syntax of two LDAP Extension Function,
Idap_backup_object (page 330) and Idap_restore_object (page 386).

Revision History 507

October 2004 Added the following:
+ Information on Section 1.5, “LDAP Based Backup,” on page 39 and
“GSSAPI” on page 31.

+ 2 new standard LDAP functions, Idap_gssbind (page 174) and
Idap_gss_error (page 176).

+ 2 new LDAP extension functions, |[dap_backup_object (page 330) and
Idap_restore_object (page 386).
June 2004 Added the following:
+ 2 new LDAP extension function, Idap_destroy (page 139), Idap_dup
(page 141).
+ A new session preference option, “LDAP_OPT_SESSION_REFCNT”
on page 429.

February 2004 Renamed the product name from “NDS” to “Novell eDirectory” at relevant
instances.

October 2003 Added the following:

¢ Support for the HP-UX platform
+ Information about Section 1.7.2, “LBURP,” on page 43.

+ 6 new LDAP extension functions, Idap_lburp_end_request (page 347),
Idap_lburp_operation_request (page 348),
Idap_lburp_parse_operation_response (page 350),
Idap_lburp_start_request (page 351), Idap_parse_Iburp_end_response
(page 362), and Idap_parse_Iburp_start_response (page 364).

* 2 new structures, LBURPUpdateResult (page 481), and
LBURPUpdateOperationList (page 482).
June 2003 Added the following:
+ Changed LDAP event system to eDirectory event system
September 2002 Added the following:
+ Information on referral handling, outlined in Section 1.6, “Referral
Handling in LDAP v3,” on page 40

* 2 new session options, LDAP_OPT_REFERRAL_LIST and
LDAP_OPT_NETWORK_TIMEOUT. See Section 1.6, “Referral
Handling in LDAP v3,” on page 40 and “Setting Initial Connection
Timeout” on page 22 for conceptual information on these new options.

+ Fixed errors in the Idap_event function descriptions
Added the following functions:

¢ |dap_multisort_entries (page 201)

508 NDK: LDAP Libraries for C

May 2002

February 2002

September 2001

June 2001

February 2001

Added the following:

*

*

*

Information on the new SASL authentication mechanisms, outlined in
“Authentication” on page 28.

LDAP event system
startTLS and stopTLS

Added the following functions:

*

*

*

*

*

*

Idap_bind_digest md5_start (page 91)
Idapssl_install_routines (page 164)
Idap_bind_digest md5_finish (page 93)
Idap_bind_nmas_s (page 95)
Idapssl_start_tls (page 322)
Idapssl_stop_tls (page 323)

Added the following:

*

*

*

Information on SSL Certificates, outlined in “SSL Certificates” on
page 31.

Schema Parsing Functions including:

New DirLoad driver for the Novell Import Convert Export utility.

Added the following:

*

*

*

More information on search filters.
More information on time formats.
Interactive SSL APIs

Added the following:

*

*

Information on LDAP URLs.

Updated the LDAPURLDesc (page 499) struct to maintain IETF
conformance.

Update the Idap_get_effective_privileges (page 341) function with new
rights flags.

Added documentation for the DELIM handler in the Novell Import
Convert Export Utility.

Updated the LDAP Ultilities documentation.
Removed Multi-byte functions.

Updated the documentation for the LDAP unibind functions.

Added the following:

*

New functions—Idap_set_replication_filter, [dap_get_replication_filter,
Idap_create_orphan_naming_context, and
Idap_remove_orphan_naming_context.

New UTF-8 conversion routines
Updated the LDAPMod structure

Replaced the LDAP_OPT_ERROR_NUMBER constant with
LDAP_OPT_RESULT_CODE

Updated the fbuf parameter description for the ber_free function.

Revision History

509

September 2000 Added the following:

* Information to the Idap_url_parse function
+ Runtime information

¢ XML rule information to the Novell Import Convert Export utiltiy

July 2000 Added the following:

* Support for the Solaris and Linux platforms
+ A task for changing a user's password

+ An Idapx_memfree function to free memory allocated by the LDAP
extension library

+ |dapadd and Novell Import/Export utility information
+ LDIF examples

May 2000 Added information about functions that allocate and free memory.

Added the following new functions: Idap_set_rebind_proc, |dap_is_ldap_url,
Idap_is_Idaps_url, Idap_free_urldesc, Idap_url_search, Idap_url_search_s,
Idap_url_search_st, and Idap_refresh_server.

Added the following structure: LDAPURLDesc.

510 NDK: LDAP Libraries for C

	NDK: LDAP Libraries for C
	Preface
	1 Concepts
	1.1 Getting Started
	1.1.1 Dependencies
	1.1.2 Platform Libraries and Header Files
	1.1.3 Supported Platforms
	1.1.4 Supported Compilers
	1.1.5 Tutorials
	1.1.6 Sample Code

	1.2 Using the LDAP Functions
	1.2.1 Using Dynamic Memory with LDAP Functions
	1.2.2 Selecting a Function for an LDAP Operation
	1.2.3 Using Asynchronous or Synchronous Functions
	1.2.4 Initializing a Session with LDAP v3
	1.2.5 Setting Initial Connection Timeout
	1.2.6 Setting and Getting the Cipher Level
	1.2.7 LDAP URLs
	1.2.8 Threads
	1.2.9 Internationalization

	1.3 Authentication and Security
	1.3.1 Setting Up SSL Security
	1.3.2 Authentication
	1.3.3 SSL Certificates
	1.3.4 Transport Layer Security
	1.3.5 Recommendations

	1.4 LDAP Searches
	1.4.1 Setting the Search Parameters and Search Constraints
	1.4.2 Using Search Filters
	1.4.3 Operational Attributes

	1.5 LDAP Based Backup
	1.6 Referral Handling in LDAP v3
	1.6.1 Configuring eDirectory to Return Complete Data
	1.6.2 Configuring eDirectory to Return Referrals
	1.6.3 Enabling Referral Handling in the Application
	1.6.4 Creating a Rebind Process
	1.6.5 Using the Rebind Process
	1.6.6 Following Referrals Manually
	1.6.7 Retrieving Referrals for Non-Search Operations
	1.6.8 Limiting Referral Hops

	1.7 eDirectory Event System
	1.7.1 Registering to Monitor an Event
	1.7.2 LBURP

	1.8 Character Conversions
	1.8.1 A Brief History of Character Encoding
	1.8.2 UTF-8 Encoding
	1.8.3 UTF-8
	1.8.4 wchar_t Type

	1.9 Time Formats
	1.10 Controls and Extensions
	1.10.1 Controls
	1.10.2 Extensions

	1.11 Runtime Version of the Library Files
	1.11.1 Windows (NT, 95, 98, 2000, XP) & Windows Vista 64-bit
	1.11.2 NetWare
	1.11.3 UNIX 32-bit (Solaris, Linux, AIX, HP-UX) & UNIX 64-bit (Linux)

	1.12 Internationalization
	1.12.1 File Locations
	1.12.2 Language Directory Names

	2 Tasks
	2.1 Establishing an SSL Connection
	2.2 Reading the Root DSE
	2.3 Adding an Entry
	2.4 Modifying an Entry
	2.5 Modifying an Entry's Password
	2.6 Extending the Schema

	3 Standard LDAP Functions
	ber_alloc_tConstructs and returns an empty BerElement.
	ber_bvdupReturns a copy of a berval structure.
	ber_bvecfreeFrees an array of returned berval structures.
	ber_bvfreeFrees a returned berval structure.
	ber_first_elementPositions the state of a BerElement to its first element and returns the type of the first element.
	ber_flattenAllocates a berval structure whose contents are a BER encoding of the specified BerElement.
	ber_freeFrees a BerElement structure allocated by the ber_alloc_t or the ber_init function.
	ber_initAllocates and initializes a new BerElement structure with a copy of the data in the given berval structure.
	ber_next_elementPositions the state of a BerElement to the next element and returns its type.
	ber_peek_tagReturns the tag and length of the next element in a BerElement.
	ber_printfencodes data items info a BerElement.
	ber_scanfDecodes a BerElement, similar to the sscanf function.
	ber_skip_tagSkips the next element of a BerElement, returning its length and tag.
	ldap_abandon
	ldap_abandon_extAbandons an asynchronous LDAP operation already in progress using LDAP client or server controls.
	ldap_add
	ldap_add_extAsynchronously adds an entry to the directory using LDAP client or server controls.
	ldap_add_ext_sSynchronously adds an entry to the directory using LDAP client or server controls.
	ldap_add_sSynchronously adds an entry to the directory.
	ldap_bind
	ldap_bind_digest_md5_startBegins the DIGEST-MD5 SASL bind process.
	ldap_bind_digest_md5_finish
	ldap_bind_nmas_s
	ldap_bind_s
	ldap_cancel_extCancels an asynchronous LDAP operation already in progress using LDAP client or server controls. The LDAP Cancel operation should be used instead of the LDAP abandon operation when the client needs to know the results.
	ldap_cancel_ext_sSynchronously Cancels an asynchronous LDAP operation already in progress using LDAP client or server controls. The LDAP Cancel operation should be used instead of the LDAP abandon operation when the client needs to know the result.
	ldap_compareAsynchronously determines whether a specified entry contains a specified attribute value.
	ldap_compare_extAsynchronously determines whether a specified entry contains a specified attribute value. LDAP client or server controls can be used with the compare.
	ldap_compare_ext_sSynchronously determines whether a specified entry contains a specified attribute value. LDAP client or server controls can be used with the compare.
	ldap_compare_sSynchronously determines whether a specified entry contains a specified attribute value.
	ldap_control_freeFrees an LDAPControl structure.
	ldap_controls_freeFrees an array of LDAPControl structures.
	ldap_count_entriesReturns the number of LDAPMessage structures that are of the type LDAP_RES_SEARCH_ENTRY.
	ldap_count_messagesReturns the number of LDAPMessage structures of any type in an LDAP message chain.
	ldap_count_referencesReturns the number of LDAPMessage structures in an LDAP result message chain that are of type LDAP_RES_SEARCH_REFERENCE.
	ldap_count_valuesReturns the number of strings in the array.
	ldap_count_values_lenReturns the number of berval structures in the array.
	ldap_create_geteffective_controlCreates and encodes a get effective privilege control.
	ldap_create_persistentsearch_controlCreates and encodes a persistent search control.
	ldap_create_reference_control Creates and ecodes a reference control.
	ldap_create_sort_controlCreates and encodes a server-side sort control.
	ldap_create_sort_keylistCreates an a array of pointers to LDAPSortKey structures.
	ldap_create_sstatus_controlCreates and encodes a search status control.
	ldap_create_vlv_controlCreates and encodes a server-side virtual list view control to use with a search operation.
	ldap_deleteAsynchronously deletes the specified entry.
	ldap_delete_extAsynchronously deletes the specified entry using LDAP client or server controls.
	ldap_delete_ext_sSynchronously deletes the specified entry using LDAP client or server controls.
	ldap_delete_sSynchronously deletes the specified entry.
	ldap_destroyDestroys the session handle.
	ldap_dn2ufnConverts a distinguished name into the user friendly format.
	ldap_dupReturns a duplicate of a session handle.
	ldap_err2stringConverts a numeric LDAP error code into a character string.
	ldap_explode_dnBreaks a distinguished name into its components.
	ldap_explode_rdnBreaks a relative distinguished name into its components.
	ldap_extended_operationAsynchronously passes extended LDAP operations to the LDAP server.
	ldap_extended_operation_sSynchronously passes extended LDAP operations to the LDAP server.
	ldap_first_attributeReturns the name of the first attribute in an entry.
	ldap_first_entryReturns a pointer to the first entry of message type, LDAP_RES_SEARCH_ENTRY, from a search result chain.
	ldap_first_messageReturns a pointer to the first message type, LDAP_RES_SEARCH_ENTRY, LDAP_RES_SEARCH_RESULT, or LDAP_RES_SEARCH_REFERENCE in a result chain.
	ldap_first_referenceReturns a pointer to the first reference of message type, LDAP_RES_SEARCH_REFERENCE, in a search result chain.
	ldap_free_sort_keylistFrees the memory allocated by the ldap_create_sort_keylist function.
	ldap_free_urldescFrees the memory allocated by the ldap_url_parse function.
	ldap_get_dnReturns the distinguished name of an entry from a search result chain.
	ldap_get_digest_md5_realms
	ldapssl_install_routinesEnables an existing, but new, LDAP session handle for SSL.
	ldap_get_entry_controlsRetrieves LDAP controls from an entry.
	ldap_get_lderrno
	ldap_get_optionReturns information about session preferences.
	ldap_get_valuesReturns string values of a specified attribute from an entry.
	ldap_get_values_lenReturns binary values of a specified attribute from an entry.
	ldap_gssbindAuthenticates the specified client to the LDAP server using the SASL-GSSAPI mechanism.
	ldap_gss_errorConverts GSSAPI error into a character string.
	ldap_initInitializes an LDAP session associated with an LDAP server and returns a pointer to a session handle.
	ldap_is_ldap_urlDetermines whether the URL is an LDAP URL.
	ldap_is_ldaps_urlDetermines whether the URL is an LDAPS URL.
	ldap_memfreeFrees memory allocated by a call to the LDAP libraries.
	ldap_modifyAsynchronously modifies the specified entry on the LDAP server.
	ldap_modify_extAsynchronously modifies specified attributes of an entry on an LDAP server, using LDAP client or server controls.
	ldap_modify_ext_sSynchronously modifies specified attributes of an entry on an LDAP server, using LDAP client or server controls.
	ldap_modify_sSynchronously modifies the specified entry on an LDAP server.
	ldap_modrdn
	ldap_modrdn_s
	ldap_modrdn2
	ldap_modrdn2_s
	ldap_msgfreeFrees each message in the result chain pointed to by the res parameter and returns the type of the last message in the chain.
	ldap_msgidReturns the message ID associated with the res parameter.
	ldap_msgtypeReturns the type of message associated with the res parameter.
	ldap_multisort_entriesSorts a chain of entries, returned by an LDAP search operation, using either the entries’ DN or a specified array of attributes.
	ldap_next_attributeReturns the name of the next attribute in an entry.
	ldap_next_entryReturns a pointer to the next entry of message type, LDAP_RES_SEARCH_ENTRY, in chain of LDAPMessage structures.
	ldap_next_messageReturns a pointer to the next message of message type, LDAP_RES_SEARCH_ENTRY, LDAP_RES_SEARCH_RESULT, or LDAP_RES_SEARCH_REFERENCE, in chain of LDAPMessage structures.
	ldap_next_referenceReturns a pointer to the next reference of message type, LDAP_RES_SEARCH_REFERENCE, in chain of LDAPMessage structures.
	ldap_nmas_err2stringConverts the numeric NMAS error code into a character string.
	ldap_nmas_get_errcodeReturns the NMAS error code, if there is any error.
	ldap_open
	ldap_parse_entrychange_controlDecodes the information returned from a search operation that used a persistent search control.
	ldap_parse_extended_resultRetrieves data from an LDAPMessage that contains data from an extended operation.
	ldap_parse_intermediateRetrieves intermediate data from an LDAPMessage that contains data from an extended operation.
	ldap_parse_referenceExtracts URLs and controls from an LDAPMessage structure of type LDAP_RES_SEARCH_REFERENCE.
	ldap_parse_reference_controlDecodes the information returned from a search operation that used a server-side sort control.
	ldap_parse_resultExtracts error, referral, and server control information from an LDAPMessage structure.
	ldap_parse_sasl_bind_resultExtracts SASL bind information from an LDAPMessage structure.
	ldap_parse_sort_controlDecodes the information returned from a search operation that used a server-side sort control.
	ldap_parse_sstatus_control Decodes the information returned from a search status control.
	ldap_parse_vlv_controlDecodes the information returned from a search operation that used a VLV (virtual list view) control.
	ldap_perror
	ldap_renameAsynchronously renames the specified entry.
	ldap_rename_sSynchronously renames the specified entry.
	ldap_resultObtains results from a previous asynchronously initiated operation.
	ldap_result2error
	ldap_sasl_bindAsynchronously authenticates the specified client to the LDAP server using a Simple Authentication Security Layer (SASL).
	ldap_sasl_bind_sSynchronously authenticates the specified client to the LDAP server using a Simple Authentication Security Layer (SASL).
	ldap_schema_fetchConnects to a directory and retuns the schema to an LDAPSchema struct.
	ldap_schema_freeFrees the memory allocated to an LDAPSchema handle.
	ldap_schema_get_by_nameRetrieves a handle to a schema element, identified by its type and either a name or oid.
	ldap_schema_get_countReturns the count of schema elements of the type specified.
	ldap_schema_get_by_indexAllows you to iterate through schema elements of a specific type.
	ldap_schema_get_field_namesRetrieves a list of field names in a null-terminated array.
	ldap_schema_get_field_valuesRetrieves a list of field names in a null-terminated array.
	ldap_schema_addAdds a schema element definition to the local copy of schema in an LDAPSchema structure.
	ldap_schema_modifyModifies an existing schema element definition.
	ldap_schema_deleteRemoves a schema element definition from the directory and from the local copy of schema in an LDAPSchema structure.
	ldap_schema_saveCommits any changed made in the LDAPSchema structure since the schema was fetched from a directory.
	ldap_searchAsynchronously searches the directory.
	ldap_search_extAsynchronously searches the directory using LDAP client or server controls.
	ldap_search_ext_sSynchronously searches the directory using LDAP client or server controls.
	ldap_search_sSynchronously searches the directory.
	ldap_search_stSynchronously searches the directory within a specified time limit.
	ldap_set_lderrno
	ldap_set_optionSets the value of session-wide parameters.
	ldap_set_rebind_procSets the process that is used to bind when following referrals.
	ldap_simple_bindAsynchronously authenticates an entry to the directory.
	ldap_simple_bind_sSynchronously authenticates the specified client to the LDAP server using a distinguished name and password.
	ldap_sort_entriesSorts a chain of entries, returned by an LDAP search operation, using either the entries' DN or a specified attribute.
	ldap_sort_strcasecmpCompares two strings, ignoring any differences in upper and lower case characters between the strings.
	ldap_sort_valuesSorts an array of values retrieved from an ldap_get_values function.
	ldap_unbind, ldap_unbind_sUnbinds from the directory, closes the connection, and frees resources associated with the session. Functionally, there are no differences between ldap_unbind and ldap_unbind_s.
	ldap_unbind_ext, ldap_unbind_ext_sUnbinds from the directory, closes the connection, and frees resources associated with the session. Functionally, there are no differences between ldap_unbind_ext and ldap_unbind_ext_s.
	ldap_url_desc2strConverts from an LDAPURLDesc structure to a URL string.
	ldap_url_parseParses the specified URL into its components.
	ldap_url_parse_extParses the specified URL into its components.
	ldap_url_searchUses the specified URL to perform an asynchronous search operation.
	ldap_url_search_sUses the specified URL to perform a synchronous search operation.
	ldap_url_search_stUses the specified URL to perform a synchronous search operation that includes a specified time limit.
	ldap_value_freeFrees the memory allocated for an array of string values.
	ldap_value_free_lenFrees the memory allocated for an array of berval structures.
	ldapssl_client_initInitializes the SSL (Secure Socket Layer) library.
	ldapssl_client_deinitDeinitializes the SSL library.
	ldapssl_initCreates an LDAP session handle that is SSL enabled.
	ldapssl_add_trusted_certAdds certificates to the list of trusted certificates.
	ldapssl_get_certReturns a certificate encoded in the requested format.
	ldapssl_get_cert_attributeReturns requested certificate information.
	ldapssl_set_verify_modeSets the server certificate verification mode used when establishing an SSL connection.
	ldapssl_set_client_certSpecifies the client certificate to be used with client-based certificate authentication (CBCA).
	ldapssl_set_client_private_keySpecifies the private key to be used with client-based certificate authentication (CBCA).
	ldapssl_get_verify_modeReturns the current server certificate verification mode that is used when establishing an SSL connection.
	ldapssl_set_verify_callbackSets the routine to be called during SSL connection establishment if the server certificate received is not trusted.
	ldapssl_start_tlsStarts Transport Layer Security (TLS/SSL). Works with eDirectory 8.7 or higher.
	ldapssl_stop_tlsStops Transport Layer Security (TLS/SSL). Works with eDirectory 8.7 or higher.

	4 LDAP Extension Functions
	ldap_abort_partition_operationAborts the last partition operation on the specified partition.
	ldap_add_replicaAdds a replica to the specified directory server.
	ldap_backup_objectBacks up the attribute names and values for an object.
	ldap_change_replica_typeChanges the type of the specified replica on the specified directory server.
	ldap_create_partitionCreates a new LDAP partition.
	ldap_create_orphan_partitionCreates an orphan partition on the specified server.
	ldap_event_freeFrees data allocated by the ldap event functions.
	ldap_get_bind_dnReturns the distinguished name of the client associated with the LDAP connection.
	ldap_get_effective_privilegesReturns the effective rights of the specified entry to the specified attribute.
	ldap_get_replication_filterGets the replication filter defined for an eDirectory server.
	ldap_get_replica_infoReturns information about the specified replica on the specified directory server.
	ldap_lburp_end_requestSends an LBURP end request extended operation to the server.
	ldap_lburp_operation_requestSends an LBURP operation request extended operation to the server.
	ldap_lburp_parse_operation_responseParses LBURP operation response data when the result code is LDAP_RES_EXTENDED.
	ldap_lburp_start_requestSends an LBURP start request extended operation to the server.
	ldap_list_replicasLists all the replicas on the specified directory server.
	ldap_merge_partitionsJoins a parent and child partition.
	ldap_monitor_eventsSends an EventMonitorRequest extended operation to the server. Event monitoring works with eDirectory 8.7 or higher.
	ldap_monitor_events_filteredSends a filtered EventMonitorRequest extended operation to the server. Event monitoring works with eDirectory 8.7 or higher.
	ldap_parse_ds_eventParses event data when the ldap result code is LDAP_RES_EXTENDED. This result code Indicates that an error or exceptional situation occured and events will not be monitored. Event monitoring works with eDirectory 8.7 or higher.
	ldap_parse_lburp_end_responseParses LBURP end response data when the result code is LDAP_RES_EXTENDED.
	ldap_parse_lburp_start_responseParses LBURP start response data when the result code is LDAP_RES_EXTENDED.
	ldap_parse_monitor_events_responseParses event data when the result code is LDAP_RES_INTERMEDIATE. This result code indicates that an event has occured. Event monitoring works with eDirectory 8.7 or higher.
	ldap_partition_entry_countReturns the number of entries in the specified partition.
	ldap_nds_to_ldapConverts a typeless, distinguished eDirectory name into LDAP format.
	ldap_nds_to_x500_dnConverts a namemapped dn into LDAP format.
	ldap_receive_all_updatesRequests that a specified replica on a specified server receive all updates.
	ldap_refresh_serverRestarts the LDAP server associated with the specified session handle.
	ldap_remove_orphan_partitionRemoves the specified orphan partition from the specified server.
	ldap_remove_replicaRemoves a replica from the specified directory server.
	ldap_request_partition_syncSchedules synchronization of the specified partition after the specified delay.
	ldap_request_schema_syncSchedules synchronization of the schema after the specified delay.
	ldap_restore_object
	ldap_send_all_updatesRequests that a specified server send all updates to the replica ring.
	ldap_set_replication_filterSets the attribute and class filter for an eDirectory filtered replica.
	ldap_split_orphan_partitionSplits the specified orphan partition from the specified server.
	ldap_split_partitionSplits a partition.
	ldap_trigger_back_processTriggers a background process.
	ldapx_memfreeFrees memory allocated by the LDAP extension library.

	5 UTF-8 Functions
	5.1 UTF-8 / Wide Character Conversions
	ldap_x_utf8_to_wcConvert a single UTF-8 encoded character to a wide character.
	ldap_x_utf8s_to_wcs Convert a UTF-8 string to a wide character string.
	ldap_x_wc_to_utf8Convert a single wide character to a UTF-8 sequence.
	ldap_x_wcs_to_utf8sConvert a wide character string to a UTF-8 string.

	5.2 UTF-8 Utility Functions
	ldap_x_utf8_charsReturn the number of UTF-8 characters (not bytes) in a null-terminated UTF-8 string.
	ldap_x_utf8_charlenReturn the number of bytes in a UTF-8 character.
	ldap_x_utf8_charlen2Return the number of bytes in a UTF-8 character, while catching shortest possible illegal UTF-8 encoding.
	ldap_x_utf8_nextFind the next character in a UTF-8 string.
	ldap_x_utf8_prevFind the previous character in a UTF-8 string.
	ldap_x_utf8_copyCopy one UTF-8 character.
	ldap_x_utf8_strchrFind a character in a string.
	ldap_x_utf8_strspnFind the first substring.
	ldap_x_utf8_strcspnFind a substring in a string.
	ldap_x_utf8_strpbrkFind first occurrence of a character from one string in another string.
	ldap_x_utf8_strtokFind next token in string.

	6 Values
	6.1 Object Access Control Rights
	6.2 Attribute Access Control Rights
	6.3 Certificate Attribute IDs
	6.4 Inheritance Control Rights
	6.5 Replica States
	6.6 Replication Filters
	6.7 Replica Types
	6.8 Request Message Types
	6.9 Result Message Types
	6.10 Session Preference Options
	6.11 Schema Element Types
	6.11.1 LDAP_SCHEMA_ATTRIBUTE_TYPE
	6.11.2 LDAP_SCHEMA_OBJECT_CLASS
	6.11.3 LDAP_SCHEMA_MATCHING_RULE
	6.11.4 LDAP_SCHEMA_MATCHING_RULE_USE
	6.11.5 LDAP_SCHEMA_NAME_FORM
	6.11.6 LDAP_SCHEMA_SYNTAX
	6.11.7 LDAP_SCHEMA_DIT_CONTENT_RULE
	6.11.8 LDAP_SCHEMA_DIT_STRUCTURE_RULE

	6.12 SSL Certificate Status Codes

	7 Structures
	BerElementContains an opaque data structure for data encoded with BER (Basic Encoding Rules).
	bervalContains binary data that is encoded with simplified BER (Basic Encoding Rules).
	DB_binaryContains a binary debug event parameter value.
	DB_netAddressContains a net address debug event parameter value.
	DB_ParameterContains debug parameters associated with debug events.
	DB_timeStampVectorContains a time stamp vector debug event parameter value.
	DB_valueContains a value associated with debug events.
	EVT_ AbandonEventDataContains the data associated with Abandon operation with the LDAP Server.
	EVT_AuthEventDataContains the data associated with Bind/Unbind operation with the LDAP Server.
	EVT_BinderyObjectInfoContains information about a bindery object associated with an event.
	EVT_ChangeConfigParm
	EVT_ChangeConnStateContains information about a connection whose state is being changed.
	EVT_ChangeServerAddr
	EVT_CompareEventDataContains the data associated with Compare operation with the LDAP Server.
	EVT_ConnectionEventDataContains the data associated with connection with the LDAP Server.
	EVT_DebugInfoContains data associated with debug events.
	EVT_EntryInfoContains data associated with state changes on individual entries in the directory.
	EVT_EventDataContains data associated with general DS events. The meaning of this structure's content is dependent on the type of event.
	EVT_EventSpecifierContains information about a single event to monitor.
	EVT_ExtOpEventDataContains the data associated with Extended operation with the LDAP Server.
	EVT_FilteredEventSpecifierContains information about a single event to monitor, including a filter used by the server to limit returned events.
	EVT_ModDNEventDataContains the data associated with Modify DN operation with the LDAP Server.
	EVT_ModuleStateContains information about an eDirectory module state that is being changed.
	EVT_NetAddressContains a network address associated with a DSEvent.
	EVT_PasswordModifyEventData Contains the data associated with password modify operation with the LDAP Server.
	EVT_ReferralAddress
	EVT_ResponseEventDataContains the data associated with LDAP Response of operations Bind, Search Entry, Add, Modify, Delete, Modify DN, and Extension operation.
	EVT_SearchEventDataContains the data associated with Search operation with the LDAP Server.
	EVT_SearchEntryResponseEventDataContains the data associated with response per entry of a Search operation with the LDAP Server.
	EVT_SEVInfoContains a Security Equivalence Vector associated with a DSEvent.
	EVT_SysExtOpEventDataContains the data associated with LDAP System Extensions operation with the LDAP Server.
	EVT_TimeStampContains a time stamp associated with an event.
	EVT_UnknownEventDataContains the data associated with Unknown operation with the LDAP Server.
	EVT_UpdateEventDataContains the data associated with Add/Modify/Delete operation with the LDAP Server.
	EVT_ValueInfoContains data associated with changes to individual attributes.
	LBURPUpdateResultContains the result set of an LBURP operation.
	LBURPUpdateOperationList Contains the modifications to make to an entry.
	LDAPContains an opaque data structure for LDAP session handle information.
	LDAP_DIGEST_MD5_CONTEXTContains an opaque data structure for Digest-md5 data.
	LDAPAPIFeatureInfoContains version information about the LDAP API extended features.
	LDAPAPIInfoContains information about the vendor's implementation of the LDAP API.
	LDAPControlContains data about an LDAP control.
	LDAPMessageContains an opaque data structure for the results of an asynchronous LDAP operation or a search operation.
	LDAPModContains the modifications to make to one attribute of an entry.
	LDAPReplicaInfoContains information about a replica.
	LDAPSchemaContains an opaque data structure for schema information.
	LDAPSchemaElementContains an opaque data structure for a single schema definition.
	LDAPSchemaModContains the definition of one field in a schema definition.
	LDAPSortKeyContains information about a sort key.
	LDAPSSL_CertContains SSL certificate information.
	LDAPSSL_Cert_Validity_PeriodContains the earliest and latest times that a certificate is valid.
	LDAPURLDescContains URL information and the parameters for the search operation.
	LDAPVLVInfoContains state information associated with a series of virtual list view interactions between a client and an LDAP server.
	timevalContains timeout values for search requests.

	A Source Code Contributors
	B Revision History

