
n

NDK: eDirectory Event Services
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

E D I R E C T O R Y TM E V E N T S E R V I C E S

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1998-2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc., in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc., in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.
Java is a trademark or registered trademark of Sun Microsystems, Inc., in the United States and other countries.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 9

1 Concepts 11
1.1 eDirectory Event Introduction . 11
1.2 eDirectory Event Functions . 12

1.2.1 eDirectory Event Registration Functions . 12
1.2.2 eDirectory Event Helper Functions . 13
1.2.3 eDirectory Event Handling. 13
1.2.4 eDirectory Event Slot Table. 13

1.3 eDirectory Event Priorities . 14
1.3.1 EP_INLINE . 16
1.3.2 EP_JOURNAL. 16
1.3.3 EP_WORK . 17
1.3.4 Priority 0 . 17
1.3.5 Priority 1 . 17
1.3.6 Priority 2 . 18

1.4 eDirectory Event Data Filtering . 18
1.4.1 Filtering eDirectory Events by Local ID . 18
1.4.2 Filtering eDirectory Events by DSTrace Events . 19

1.5 eDirectory Event Types . 19
1.6 Global Network Monitoring . 19

2 Tasks 21
2.1 Monitoring eDirectory Events. 21
2.2 Registering for eDirectory Events . 21
2.3 Unregistering for eDirectory Events. 22

3 Functions 23
NWDSEConvertEntryName . 24
NWDSEGetLocalAttrID. 26
NWDSEGetLocalAttrName. 28
NWDSEGetLocalClassID . 30
NWDSEGetLocalClassName . 32
NWDSEGetLocalEntryID . 34
NWDSEGetLocalEntryName . 36
NWDSERegisterForEvent . 38
NWDSERegisterForEventWithResult . 40
NWDSEUnRegisterForEvent . 43

4 Structures 45
DSEACL . 46
DSEBackLink . 48
DSEBinderyObjectInfo . 49
DSEBitString. 50
DSEChangeConnState. 51
7

8 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSECIList . 53
DSEDebugInfo . 54
DSEEmailAddress. 55
DSEEntryInfo. 56
DSEEntryInfo2. 58
DSEEventData . 60
DSEFaxNumber . 62
DSEHold . 63
DSEModuleState. 64
DSENetAddress . 66
DSEOctetList . 67
DSEPath . 68
DSEReplicaPointer . 69
DSESEVInfo . 70
DSETimeStamp. 71
DSETraceInfo . 72
DSETypedName . 74
DSEVALData. 75
DSEValueInfo . 77

5 Values 79
5.1 Event Priorities . 79
5.2 Event Types . 80

A Revision History 99
tory Event Services

novdocx (E
N

U
) 01 February 2006
About This Guide

Novell® eDirectoryTM Event Services provide a way for applications to monitor the activity of
eDirectory on an individual server. Your application can specify which events to monitor and when
it wants notification. The information about eDirectory Event Services is divided into the following
sections:

• Chapter 1, “Concepts,” on page 11
• Chapter 2, “Tasks,” on page 21
• Chapter 3, “Functions,” on page 23
• Chapter 4, “Structures,” on page 45
• Chapter 5, “Values,” on page 79
• Appendix A, “Revision History,” on page 99

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see eDirectory Libraries for C (http://
developer.novell.com/ndk/ndslib.htm).

Additional Information

For information about other eDirectory interfaces, see the following guides:

• eDirectory Iterator Services (http://developer.novell.com/ndk/doc/ndslib/skds_enu/data/
front.html)

• eDirectory Backup Services (http://developer.novell.com/ndk/doc/ndslib/dsbk_enu/data/
front.html)

• eDirectory Technical Overview (http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/
h6tvg4z7.html)

• eDirectory Core Services (http://developer.novell.com/ndk/doc/ndslib/nds__enu/data/
h2y7hdit.html)

• eDirectory Schema Reference (http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/
h4q1mn1i.html)

For help with eDirectory problems or questions, visit the eDirectory Libraries for C Developer
Support Forum (http://developer.novell.com/ndk/devforums.htm).

For product information about eDirectory, see the eDirectory Documentation Site (http://
www.novell.com/documentation/edirectory.html).
9

http://developer.novell.com/ndk/ndslib.htm
http://developer.novell.com/ndk/doc/ndslib/skds_enu/data/front.html
http://developer.novell.com/ndk/doc/ndslib/dsbk_enu/data/front.html
http://developer.novell.com/ndk/doc/ndslib/dsov_enu/data/h6tvg4z7.html
http://developer.novell.com/ndk/doc/ndslib/nds__enu/data/h2y7hdit.html
http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm
http://www.novell.com/documentation/edirectory.html

10 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
tory Event Services

1
novdocx (E

N
U

) 01 February 2006
1Concepts

This section provides an overview of Novell® eDirectoryTM Event Services, its functions, and uses.

• Section 1.1, “eDirectory Event Introduction,” on page 11
• Section 1.2, “eDirectory Event Functions,” on page 12
• Section 1.3, “eDirectory Event Priorities,” on page 14
• Section 1.4, “eDirectory Event Data Filtering,” on page 18
• Section 1.5, “eDirectory Event Types,” on page 19
• Section 1.6, “Global Network Monitoring,” on page 19

1.1 eDirectory Event Introduction
The eDirectory Event system provides a mechanism for monitoring eDirectory activity on an
individual server. The event system generates events for local activities such as adding eDirectory
objects, deleting eDirectory objects, and modifying attribute values. See “Values” on page 79 for a
list of the events and the data types they use.

A monitoring application can decide which events it wants to monitor and then register for these
events. Such registered applications become event handlers (see “eDirectory Event Handling” on
page 13). The eDirectory event system can notify the event handler during the event or after the
event. The event handler remains registered until the application requests that the handler be
removed (unregistered).

eDirectory allocates an eDirectory Event Slot Table (page 13) to track the events.The table contains
only the events that have one or more handlers registered for them. The table is dynamic and grows
as handlers register for events not previously listed in the table. When a handler is the only handler
registered for an event and that handler unregisters, the event is removed from the table. When
events are removed, the table does not shrink. It grows to accommodate new events, but remains at
its maximum size when events are removed.

Handlers use the NWDSERegisterForEvent (page 38) function to register for an event. They use the
NWDSEUnRegisterForEvent (page 43) function to remove their handler from the Slot Table.

In addition to the registration events, eDirectory uses eDirectory Event Helper Functions (page 13)
to help access and evaluate the data for the event. If successful, these functions return zero. If
unsuccessful, they return a negative value that identifies the error.

When an eDirectory module generates an event, if no handler has registered for the event, the event
is dropped. If a handler or handlers are registered, the handlers are notified according to their
registered priority.

eDirectory Event Services can also be used for:

• External Synchronization to the Directory: The Directory provides a global database that can
be used to store information about organizations. External databases can use the Directory as an
information source. In this case, eDirectory Event notification can be used to help keep the
external database synchronized with the Directory.
Concepts 11

12 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
• Customized eDirectory Security: eDirectory Event notification allows a monitoring application
to register to be called when specified eDirectory events occur. Being registered for such calls
allows the callback to determine whether or not the event is allowable, thus providing you the
ability to create customized eDirectory Security. For example, you could create an application
that restricts the deletion of certain classes of objects from the Directory.

• eDirectory Performance Analysis: An application could watch for the replication of a specific
object. The application could then time how long it takes for that object to appear on other
replicas.

See Also

• “eDirectory Event Handling” on page 13
• “eDirectory Event Helper Functions” on page 13
• Section 1.3, “eDirectory Event Priorities,” on page 14
• “eDirectory Event Registration Functions” on page 12
• “eDirectory Event Slot Table” on page 13
• “Values” on page 79

1.2 eDirectory Event Functions
eDirectory Event provides two types of functions: registration and helper. eDirectory Event
Registration Functions (page 12) allow an NLM application to register and unregister callback
functions when a specific event occurs. eDirectory Event Helper Functions (page 13) are for
accessing and evaluating the event data.

• Section 1.2.1, “eDirectory Event Registration Functions,” on page 12
• Section 1.2.2, “eDirectory Event Helper Functions,” on page 13
• Section 1.2.3, “eDirectory Event Handling,” on page 13
• Section 1.2.4, “eDirectory Event Slot Table,” on page 13

1.2.1 eDirectory Event Registration Functions
The following table lists registration functions:

See Also

• Section 1.2, “eDirectory Event Functions,” on page 12

Name Description

NWDSERegisterForEvent (page 38) Registers a function to be used as a callback when a specific
eDirectory event occurs.

NWDSEUnRegisterForEvent (page 43) Unregisters a callback that has been registered to be called
when a specified eDirectory event occurs.
tory Event Services

novdocx (E
N

U
) 01 February 2006
1.2.2 eDirectory Event Helper Functions
The functions listed in the following table are helper functions:

See Also

• Section 1.2, “eDirectory Event Functions,” on page 12

1.2.3 eDirectory Event Handling
The handler parameter of NWDSERegisterForEvent (page 38) points to a function called when the
event occurs. Separate functions can be registered for each event or a single function can be
registered for multiple events. If a callback processes multiple events, it can use the type parameter
to determine which event has occurred.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14
• Section 1.5, “eDirectory Event Types,” on page 19

1.2.4 eDirectory Event Slot Table
Each event has an assigned number (see “Values” on page 79), which corresponds to the event slot.
The Slot Table is dynamically extended if a new event is registered with an event number greater
than those previously registered. The system does not currently do any validation on the event
number, so the callers of the registration function need to be reasonable and not ask to register for
event 1,000,000 when the system is handling only a few hundred events.

When an event is first registered for, an EventSlot structure is allocated containing fields to hold the
number of handlers registered for the event, and fields to manage the individual handlers in priority
order.

Name Description

NWDSEConvertEntryName (page 24) Converts object names returned in the DSEEntryInfo structure
to a form that is consistent with the NWDS functions.

NWDSEGetLocalAttrID (page 26) Retrieves the local ID of a specified eDirectory attribute.

NWDSEGetLocalAttrName (page 28) Retrieves the name of the eDirectory attribute associated with
the supplied local ID.

NWDSEGetLocalClassID (page 30) Retrieves the local ID for the specified object class.

NWDSEGetLocalClassName
(page 32)

Retrieves the name of the eDirectory object class associated
with the supplied local ID.

NWDSEGetLocalEntryID (page 34) Retrieves the local ID for the specified eDirectory object.

NWDSEGetLocalEntryName (page 36) Retrieves the name of the eDirectory object that is associated
with the supplied local ID.
Concepts 13

14 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
The Slot Table initially allocates enough handler space to hold two handlers for each of the three
priorities. Handler space can be dynamically expanded if more handlers are needed within a priority.
The following figure illustrates this design.

The figure above illustrates a possible configuration for slot number 3. The other slots would have
similar configurations. Slot 3 has the default configuration with space for two handles for priorities
0 and 2, and a space for an extra handler for priority 1. Just as the Slot Table can grow dynamically
as events are added, the list of handlers can grow as handles register for an event.

See Also

• “EP_INLINE” on page 16
• “EP_JOURNAL” on page 16
• “EP_WORK” on page 17
• Section 1.2, “eDirectory Event Functions,” on page 12

1.3 eDirectory Event Priorities
The priority parameter of NWDSERegisterForEvent (page 38) specifies the registered priority of a
callback.The behavior of a callback must respond partly to its registered priority.

This section covers the following topics:

• Section 1.3.1, “EP_INLINE,” on page 16
• Section 1.3.2, “EP_JOURNAL,” on page 16
• Section 1.3.3, “EP_WORK,” on page 17
• Section 1.3.4, “Priority 0,” on page 17
• Section 1.3.5, “Priority 1,” on page 17
• Section 1.3.6, “Priority 2,” on page 18
tory Event Services

novdocx (E
N

U
) 01 February 2006
The priority flags determine the order in which handlers are notified when an event is generated.
When an event is generated, the module reports the event to the Slot Table. Handlers are notified in
the following order:

• Priority 0: EP_INLINE. Notified first. All callback processing is completed before handlers
registered for priority 1 are notified.

• Priority 1: EP_JOURNAL. Notified second. All callback processing is completed before
handlers registered for priority 2 are notified.

• Priority 2: EP_WORK. Notified last.

The following figure illustrates how the handlers are notified. It also traces which thread is used to
process the handler’s callback function.

The graphic shows the thread paths for three events. To simplify the graphic, each event has
handlers registered for only one priority. The dots (·) indicate the beginning of a thread, or at least
where the thread’s processing starts as it enters the eDirectory event system.

See Also

• Synchronous pre-event reporting, discussed in “EP_INLINE” on page 16
• Synchronous post-event reporting, discussed in “EP_JOURNAL” on page 16
• Asynchronous post-event reporting, discussed in “EP_WORK” on page 17
Concepts 15

16 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
1.3.1 EP_INLINE
The EP_INLINE priority provides synchronous pre-event reporting, as follows:

• The callback can determine whether or not the event is allowable. If the callback returns a
nonzero value, the transaction is aborted, and the return value of the callback is returned to the
client.

• The client waits for a response while the callback processes. If the callback takes too long, the
client could time out. Callbacks need to return as quickly as possible.

• The callback cannot call any of the NWDS functions because the local database is locked. In
addition, the only function it can use from eDirectory Event is NWDSEConvertEntryName
(page 24).

• The callback can sleep (normally only to allocate memory).
• This priority faces the most difficult issues when using chained event handlers. You cannot

assume that an eDirectory event will complete if your callback returns zero. This is because the
next callback in the chain could abort the transaction. To verify that changes occurred, register
a callback for the EP_JOURNAL or EP_WORK priorities.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14
• “EP_JOURNAL” on page 16
• “EP_WORK” on page 17

1.3.2 EP_JOURNAL
The EP_JOURNAL priority provides synchronous post-event reporting, as follows:

• Synchronous post-event reporting because event information is stored in a journal queue that
records the events in the order they occurred.

• A single thread services all of the callbacks for the events, so the callback’s execution time
should be minimized. (The callback can determine if data should be used If it should be used, it
can store the data in a list that another thread processes.)

• If multiple callbacks are registered for the same event, the current callback must be processed
before the next callback is called.

• The callback can sleep.
• The callback can use any of the NWDS and NWDSE functions.

IMPORTANT: While inside this callback, use discretion in calling NWDS functions that create
more eDirectory events. This is a closed loop where the growth of the journal queue could be
uncontrollable.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14

• “EP_INLINE” on page 16
• “EP_WORK” on page 17
tory Event Services

novdocx (E
N

U
) 01 February 2006
1.3.3 EP_WORK
The EP_WORK priority provides asynchronous postevent reporting, as follows:

• The events are reported after they have occurred, but not necessarily in the order that they
occurred. They are reported only after all of the event’s callbacks registered for the
EP_JOURNAL priority have completed.

• Each callback is run on a separate thread. This frees the event handler from the time constraints
of the other two priorities.

• The callback can use any of the NWDS and NWDSE functions.
• The callback can sleep.
• Time is not a critical issue.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14
• “EP_INLINE” on page 16
• “EP_JOURNAL” on page 16
• “EP_WORK” on page 17

1.3.4 Priority 0
For handlers registered for priority 0, the thread that generates the event is used to process all the
handler callback functions. When they are finished processing, the thread returns to the module that
generated the event. Since the same thread is used to process all the callback functions, callbacks
need to return as quickly as possible.

Because the thread that generates the event is the same thread that processes the handlers’ callback
functions, the callback functions can influence the outcome of the event. However, the last handler
called has the final say. The value that is reported by the last handler is used for handlers that have
registered for the other priorities and is returned the module that generated the event.

If more than one handler registers for priority 0, the handler cannot specify its position in the list.
Handlers are added in the order they register. However, one handler can register to be the auditor
handler (DSHF_AUDIT) with a notify flag. This places this handler last in the list and allows the
handler’s callback function to have the final say in whether the event fails or succeeds. Only one
handler can register as the auditor handler.

See Also

• “EP_INLINE” on page 16
• “EP_JOURNAL” on page 16
• “EP_WORK” on page 17

1.3.5 Priority 1
For handlers registered for priority 1, the thread that generates the event reports the event to the
eDirectory Event Slot Table (page 13) and immediately returns to the module that generated the
event. The Slot Table then assigns a different thread to process all the callback functions registered
Concepts 17

18 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
for priority 1. Since the same thread is used to process all the callback functions, callbacks need to
return as quickly as possible.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14

1.3.6 Priority 2
For handlers registered for priority 2, the thread that generates the event reports the event to the Slot
Table and immediately returns to the module that generated the event. The eDirectory Event Slot
Table (page 13) then assigns a different thread to each registered handler. Since each callback
function has its own thread, the callback function can be scheduled to do work that is time
consuming. The results of the callbacks are asynchronous because the finishing order is
indeterminate.

Each callback thread consumes a service process that is a limited resource on NetWare.

See Also

• Section 1.3, “eDirectory Event Priorities,” on page 14

1.4 eDirectory Event Data Filtering
When a callback is called, it must determine if the data (pointed to by the data parameter) contains
information the NLMTM application requires. For example, if the NLM application is only concerned
with changes to telephone numbers, it would use only data containing Telephone Number attribute
information. Otherwise, the callback would simply return.

Data can be filtered in two ways:

• By use of local IDs, as described in Section 1.4.1, “Filtering eDirectory Events by Local ID,”
on page 18

• By use of DSTraceEvents, as described in Section 1.4.2, “Filtering eDirectory Events by
DSTrace Events,” on page 19

1.4.1 Filtering eDirectory Events by Local ID
When examining the data structures passed in as the data parameter of your callback, you will see
that the structures use IDs rather than names. For example, the DSEValueInfo structure contains the
following IDs:

perpetratorID
entryID
attrID
syntaxID
classID

While the object names in the Directory are global, the local IDs for objects on individual servers
are not. Each object on a server is identified by a local ID that is relevant only on that server. The
object’s local ID on another server is probably not the same.
tory Event Services

novdocx (E
N

U
) 01 February 2006
The use of local IDs is not limited to object names. These IDs are also used to identify attributes and
object classes. (The IDs for syntaxes are defined in NWDSDEFS.H.)

eDirectory events are reported by ID to enhance speed. IDs are 32-bit values; comparing for equality
is faster with two IDs than with two strings.

In most cases, you can use these IDs as your filter.

For example, if an organization has an external telephone directory that needs to be kept current, it
could create an NLMTM application that registers for DSE_ADD_VALUE to determine when any
object’s phone number changes. It would then get the attribute ID by calling
NWDSEGetLocalAttrID (page 26) and filter on the attrID field.

See Also

• Section 1.4, “eDirectory Event Data Filtering,” on page 18

• “Filtering eDirectory Events by DSTrace Events” on page 19

1.4.2 Filtering eDirectory Events by DSTrace Events
eDirectory Event allows NLMTM applications to register to the DSTrace events. These events are the
same events used to report the DSTrace information when the SET DSTRACE=ON command is
issued at the server console.

IMPORTANT: Your NLM application should not rely upon the text strings supplied with the
DSTrace event. These strings are for internal debugging purposes and are not guaranteed to remain
the same in future OS versions.

See Also

• Section 1.4, “eDirectory Event Data Filtering,” on page 18

• “Filtering eDirectory Events by Local ID” on page 18

1.5 eDirectory Event Types
The type parameter of NWDSERegisterForEvent (page 38) specifies the type of event with which to
associate the callback. See the “Values” on page 79 for information about eDirectory Event types.

See Also

• “eDirectory Event Handling” on page 13
• Section 1.3, “eDirectory Event Priorities,” on page 14

1.6 Global Network Monitoring
eDirectory Event does not provide a global solution to monitoring eDirectory events. Instead, it
provides information that is local to each server. If your application is to provide a global solution it
must do the following.

• Provide an eDirectory event handler on each server being monitored.
Concepts 19

20 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
• Provide a method of sorting out duplicate events. For example, if there are three replicas on
three servers, each having an eDirectory event handler registered, then deleting an object will
show up as a separate event on each server. In this case the global monitor must either reject all
events from two of the servers or deal with receiving multiple copies of the same event.

In some implementations, it might be advantageous to obtain events from all servers that hold an
instance of a partition. Such an application might be one that measures replication time in a network.

See Also

• “eDirectory Event Handling” on page 13
tory Event Services

2
novdocx (E

N
U

) 01 February 2006
2Tasks

This section describes the most common tasks associated with an application's use of Novell®
eDirectoryTM Event Services.

• Section 2.1, “Monitoring eDirectory Events,” on page 21
• Section 2.2, “Registering for eDirectory Events,” on page 21
• Section 2.3, “Unregistering for eDirectory Events,” on page 22

2.1 Monitoring eDirectory Events
The following list is a high-level view of the steps an eDirectory event-monitoring application must
take.

1 Register for events. Follow the steps outlined in Section 2.2, “Registering for eDirectory
Events,” on page 21

2 Ensure that your application conforms to the following:
• When the specified event occurs, such as the creation of an object, the callback is called

and given data about the event.
• The callback determines whether to use the data. If it uses the data, the callback either

immediately processes the data or makes and stores a local copy of the data. Then the
callback returns.

• If the callback saved data locally so another thread can process it, that thread runs.
3 Unregister for events as explained in Section 2.3, “Unregistering for eDirectory Events,” on

page 22.

2.2 Registering for eDirectory Events
The following list is a high-level view of the steps an application must take to register for eDirectory
events.

1 Using the helper functions, determine the IDs of the desired objects, object classes, or
attributes.

2 Call NWDSERegisterForEvent (page 38) to register a function you want used as a callback
when a specific event occurs. Call NWDSERegisterForEvent (page 38) once for each event
you want monitored.

See Also

• Section 2.1, “Monitoring eDirectory Events,” on page 21
• Section 2.3, “Unregistering for eDirectory Events,” on page 22
Tasks 21

22 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
2.3 Unregistering for eDirectory Events
The following list is a high-level view of the steps an application must take to unregister for
eDirectory events.

1 When information about an event is no longer needed, call NWDSEUnRegisterForEvent
(page 43) to remove its callbacks from the notification lists.

IMPORTANT: You must call NWDSEUnRegisterForEvent once for each registered event.

See Also

• Section 2.1, “Monitoring eDirectory Events,” on page 21
• Section 2.2, “Registering for eDirectory Events,” on page 21
tory Event Services

3
novdocx (E

N
U

) 01 February 2006
3Functions

This section describes the functions used in Novell® eDirectoryTM Event Services.

• “NWDSEConvertEntryName” on page 24
• “NWDSEGetLocalAttrID” on page 26
• “NWDSEGetLocalAttrName” on page 28
• “NWDSEGetLocalClassID” on page 30
• “NWDSEGetLocalClassName” on page 32
• “NWDSEGetLocalEntryID” on page 34
• “NWDSEGetLocalEntryName” on page 36
• “NWDSERegisterForEvent” on page 38
• “NWDSERegisterForEventWithResult” on page 40
• “NWDSEUnRegisterForEvent” on page 43
Functions 23

24 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEConvertEntryName
Converts the object names returned in the DSEEntryInfo structure to a form that is consistent with
the functions whose names begin with NWDS.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEConvertEntryName (
 NWDSContextHandle context,
 const punicode DSEventName,
 pnstr objectName);

Parameters
context

(IN) Specifies the Directory context for the request.

DSEventName
(IN) Points to the object name to be converted.

objectName
(OUT) Points to the object’s name in a form consistent with the eDirectory functions.

Return Values

Remarks
The form of the object names returned in the dn and newDN fields of the DSEEntryInfo structure is
not consistent with the form used by the eDirectory functions. These names must be converted by
NWDSEConvertEntryName before you use them with eDirectory functions.

The format of the name returned in newDN is determined by the settings in the eDirectory context.

0x0000 Successful

Negative value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
The caller must allocate space for the object name to be returned. The size of the allocated memory
is ((MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1 for single-byte
characters, and 2 for double-byte characters (Unicode characters are double-byte). One character is
used for the NULL terminator.
Functions 25

26 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalAttrID
Retrieves the local ID of a specified eDirectory attribute.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalAttrID (
 NWDSContextHandle context,
 const pnstr name,
 pnuint32 id);

Parameters
context

(IN) Specifes the eDirectory context for the request.

name
(IN) Points to the name of the eDirectory attribute whose local ID is to be returned.

id
(OUT) Points to the local ID for the eDirectory attribute.

Return Values

Remarks
An attribute’s local ID is valid only for the server on which NWDSEGetLocalAttrID is called. For
this reason, this ID is called a local ID.

The data structures returned for eDirectory events do not contain attribute names. Instead, these
structures use local IDs to identify the attribute that is associated with the event.
NWDSEGetLocalAttrID is used to map an attribute name, such as User, and convert it to a local ID
that can be used to compare with the local ID in an event structure.

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
Comparisons of IDs are faster than comparisons of text strings. Therefore, to avoid unnecessary
processing time, your application should filter on IDs when possible.

See Also
NWDSEGetLocalAttrName (page 28)
Functions 27

28 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalAttrName
Retrieves the name of the eDirectory attribute associated with the supplied local ID.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalAttrName (
 NWDSContextHandle context,
 nuint32 attrID,
 pnstr name);

Parameters
context

(IN) Specifies the eDirectory context for the request.

attrID
(IN) Specifies the local ID for the schema attribute.

name
(OUT) Points to the name of the attribute associated with the local ID.

Return Values

Remarks
The data structures returned for eDirectory events do not contain attribute names. Instead, these
structures use local IDs to identify the attribute associated with the event.
NWDSEGetLocalAttrName is used to map the local attribute ID found in the structures, to a text
form of the name, such as "Telephone Number."

Comparisons of IDs is faster than comparisons of text strings. Therefore, to avoid unnecessary
processing time, your application should filter on IDs when possible.

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
The caller must allocate space for the attribute name pointed to by name. The size of the allocated
memory is ((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size) where character size is
1 for single-byte characters, and 2 for double-byte characters (Unicode is double-byte). One
character is used for NULL termination.

See Also
NWDSEGetLocalAttrID (page 26)
Functions 29

30 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalClassID
Retrieves the local ID for the specified object class.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalClassID (
 NWDSContextHandle context,
 const pnstr name,
 pnuint32 id);

Parameters
context

(IN) Specifies the eDirectory context for the request.

name
(IN) Points to the name of the object class whose local ID is to be returned.

id
(OUT) Points to the local class ID for the specified object class.

Return Values

Remarks
The local ID of an object class is valid only on the server on which NWDSEGetLocalClassID is
called. For this reason, this ID is called a local ID.

The data structures returned for DS events do not contain object class names. Instead, these
structures use local IDs to identify the object class associated with an event.
NWDSEGetLocalClassID is used to determine the local ID for an object class, such as User, so the
ID can be used for comparison operations.

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
Comparisons of IDs are faster than comparisons of text strings. Therefore, to avoid unnecessary
processing time, your application should filter on IDs when possible.

See Also
NWDSEGetLocalClassName (page 32)
Functions 31

32 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalClassName
Retrieves the name of the eDirectory object class associated with the supplied local ID.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalClassName (
 NWDSContextHandle context,
 nuint32 classID,
 pnstr name);

Parameters
context

(IN) Specifies the eDirectory context for the request.

classID
(IN) Specifies the local ID for the eDirectory object class.

name
(OUT) Points to the name of the object class associated with the local ID.

Return Values

Remarks
The data structures returned for eDirectory events do not contain object class names. Instead, these
structures use local IDs to identify the object class associated with an event.
NWDSEGetLocalClassName is used to determine the name of the object class, such as User,that is
associated with the object class ID.

Comparisons of IDs are faster than comparisons of text strings. Therefore, to avoid unnecessary
processing time, your application should filter on IDs when possible.

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
The caller must allocate space for the object-class name that is returned. The size of the allocated
memory is ((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size) where character size is
1 for single-byte characters, and 2 for double-byte characters (Unicode is double-byte). One
character is used for NULL termination.

See Also
NWDSEGetLocalClassID (page 30)
Functions 33

34 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalEntryID
Retrieves the local ID for the specified eDirectory object.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalEntryID (
 NWDSContextHandle context,
 const pnstr objectName,
 pnuint32 id);

Parameters
context

(IN) Specifies the eDirectory context for the request.

objectName
(IN) Points to the name of the eDirectory object whose local ID is to be returned.

id
(OUT) Points to the local ID for the object.

Return Values

Remarks
The name specified by objectName is relative to the context specified by context.

An object’s local ID is valid only for the server on which NWDSEGetLocalClassID is called. For
this reason, this ID is called a local ID.

Comparisons of IDs is faster than comparisons of text strings. Therefore, to avoid unnecessary
processing time, your application should filter on IDs when possible.

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
See Also
NWDSEGetLocalEntryName (page 36)
Functions 35

36 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSEGetLocalEntryName
Retrieves the name of the eDirectory object associated with the supplied local ID.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEGetLocalEntryName (
 NWDSContextHandle context,
 nuint32 entryID,
 pnstr objectName);

Parameters
context

(IN) Specifies the eDirectory context for the request.

entryID
(IN) Specifies the local ID for the eDirectory object.

objectName
(OUT) Points to the name of the eDirectory object associated with the local ID specified by
entryID.

Return Values

Remarks
The form of the name returned by NWDSEGetLocalEntryName is dependant upon the settings of
the flags associated with the eDirectory context specified by context.

The caller must allocate memory to receive the object name that is returned. The size of the
allocated memory is ((MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1 for

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
single-byte characters, and 2 for double-byte characters (Unicode is double-byte). One character is
used for the NULL terminator.

See Also
NWDSEGetLocalEntryID (page 34)
Functions 37

38 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSERegisterForEvent
Registers a function to be used as a callback when a specific eDirectory event occurs.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSERegisterForEvent (
 nint priority,
 nuint32 type,
 nint (*handler) (
 nuint32 type,
 nuint size,
 nptr *data));

Parameters
priority

(IN) Specifies the state the eDirectory event will be in when it is reported (see Section 5.1,
“Event Priorities,” on page 79).

type
(IN) Specifies the type of the event for which the callback is being registered (see Section 5.2,
“Event Types,” on page 80).

handler
(IN) Points to a function to be used as a callback when the event specified by type occurs.

Return Values

Remarks
The handler parameter is a pointer to a function that is to be called when the specified eDirectory
event occurs. The function is defined as follows:

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
tory Event Services

novdocx (E
N

U
) 01 February 2006
type
(IN) Identifies the type of the event that has occurred. (See the type parameter above.

size
(IN) Specifies the size of the data that is returned for the event.

data
(IN) Points to the location of the data that contains information related to the event. See Section
5.2, “Event Types,” on page 80 for a list of the events and the structures associated with them.

The value returned by the callback must be 0 for success and any other value for failure. If the
callback returns a nonzero value during a EP_INLINE priority event, the event will be aborted. The
callback’s return values for the EP_JOURNAL and EP_WORK priority events are ignored.

WARNING: Your application must not modify the data at the location pointed to by data. Multiple
callbacks can be registered for each event, and all of the callbacks receive that same data. When a
callback returns, the information pointed to by data is passed into the next callback, if one is
registered. Changing the information pointed to by data can produce unpredictable behavior in other
callbacks. If you are going to modify the information pointed to by data, make a local copy of the
information.

The callbacks are run on threads that do not have CLIB context. If you are using functions that need
CLIB context, you must establish the context by calling SetThreadGroupID (http://
developer.novell.com/ndk/doc/clib/thmp_enu/data/sdk347.html#sdk347) (NLM Threads
Management (http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle)).

See Also
NWDSEUnRegisterForEvent (page 43), NWDSERegisterForEventWithResult (page 40)
Functions 39

http://developer.novell.com/ndk/doc/clib/thmp_enu/data/sdk347.html#sdk347
http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle
http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle

40 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
NWDSERegisterForEventWithResult
Registers a function to be used as a callback when a specific eDirectory event occurs. Passes in the
current state of the event it is registering for.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSERegisterForEventResult (
 nint priority,
 nuint32 type,
 nint (*handler)(
 nuint32 type,
 nuint size,
 nptr *data,
 nint *result),
 nint *flags);

Parameters
priority

(IN) Specifies the state the eDirectory event will be in when it is reported (see Section 5.1,
“Event Priorities,” on page 79).

type
(IN) Specifies the type of the event for which the callback is being registered (see Section 5.2,
“Event Types,” on page 80).

handler
(IN) Points to a function to be used as a callback when the event specified by type occurs.

flags
(IN) Points to a function to be used as a callback when the event specified by type occurs.

Return Values

0x0000 Successful
tory Event Services

novdocx (E
N

U
) 01 February 2006
Remarks
The handler parameter is a pointer to a function that is to be called when the specified eDirectory
event occurs. The function is defined as follows:

type
(IN) Identifies the type of the event that has occurred. (See the type parameter above.)

size
(IN) Specifies the size of the data that is returned for the event.

data
(IN) Points to the location of the data that contains information related to the event. See Section
5.2, “Event Types,” on page 80 for a list of the events and the structures associated with them.

result
(IN) Points to the location of the data that contains information related to the result of the event,
whether an error code or success.

flags can be one of the following values:

HF_SUCCESS_ONLY and HF_FAIL_ONLY are mutually exclusive. If they are used together, no
events will be passed to this handler.

The value returned by the callback must be 0 for success and any other value for failure. If the
callback returns a nonzero value during a EP_INLINE priority event, the event will be aborted. The
callback’s return values for the EP_JOURNAL and EP_WORK priority events are ignored.

WARNING: Your application must not modify the data at the location pointed to by data. Multiple
callbacks can be registered for each event, and all of the callbacks receive that same data. When a
callback returns, the information pointed to by data is passed into the next callback, if one is
registered. Changing the information pointed to by data can produce unpredictable behavior in other
callbacks. If you are going to modify the information pointed to by data, make a local copy of the
information.

The callbacks are run on threads that do not have CLIB context. If you are using functions that need
CLIB context, you must establish the context by calling SetThreadGroupID (http://
developer.novell.com/ndk/doc/clib/thmp_enu/data/sdk347.html#sdk347) (NLM Threads
Management (http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle)).

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).

HF_ALL 0x0000 Invoke handler regardless of event status.

HF_DEAD 0x0001 This handler is dead (not passed by the user).

HF_AUDIT 0x0002 This handler is the audit handler.

HF_SUCCESS_ONLY 0x0004 Invoke handler if event is successful.

HF_FAIL_ONLY 0x0008 Invoke handler if event fails.
Functions 41

http://developer.novell.com/ndk/doc/clib/thmp_enu/data/sdk347.html#sdk347
http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle
http://developer.novell.com/ndk/doc/clib/thmp_enu/data/h7g6q8vc.html#bktitle

42 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
See Also
NWDSEUnRegisterForEvent (page 43), NWDSERegisterForEvent (page 38)
tory Event Services

novdocx (E
N

U
) 01 February 2006
NWDSEUnRegisterForEvent
Unregisters a callback that has been registered to be called when a specified eDirectory event
occurs.

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Platform: NLM

Service: eDirectory Event

Syntax
#include <nwdsdsa.h>
#include <nwdsevnt.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSEUnRegisterForEvent (
 nint priority,
 nuint32 type,
 nint (*handler) (
 nuint32 type,
 nuint size,
 nptr *data));

Parameters
priority

(IN) Specifies the state for which the eDirectory event reporting was registered (see Section
5.1, “Event Priorities,” on page 79).

type
(IN) Specifies the type of the event for which the callback was registered (see Section 5.2,
“Event Types,” on page 80).

handler
(IN) Points to the function that was registered to be used as a callback when the event occurred.

Return Values

0x0000 Successful

Negative Value Negative values indicate errors. For error values, see “NDS Return Values” (NDK:
Novell eDirectory Core Services).
Functions 43

44 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
Remarks
For more details about the parameters for this function, see NWDSERegisterForEvent (page 38) and
NWDSERegisterForEventWithResult (page 40).

See Also
NWDSERegisterForEvent (page 38), NWDSERegisterForEventWithResult (page 40)
tory Event Services

4
novdocx (E

N
U

) 01 February 2006
4Structures

This section describes the structures used by Novell® eDirectoryTM Event Services.

• “DSEACL” on page 46
• “DSEBackLink” on page 48
• “DSEBinderyObjectInfo” on page 49
• “DSEBitString” on page 50
• “DSEChangeConnState” on page 51
• “DSECIList” on page 53
• “DSEDebugInfo” on page 54
• “DSEEmailAddress” on page 55
• “DSEEntryInfo” on page 56
• “DSEEntryInfo2” on page 58
• “DSEEventData” on page 60
• “DSEFaxNumber” on page 62
• “DSEHold” on page 63
• “DSEModuleState” on page 64
• “DSENetAddress” on page 66
• “DSEOctetList” on page 67
• “DSEPath” on page 68
• “DSEReplicaPointer” on page 69
• “DSESEVInfo” on page 70
• “DSETimeStamp” on page 71
• “DSETraceInfo” on page 72
• “DSETypedName” on page 74
• “DSEVALData” on page 75
• “DSEValueInfo” on page 77
Structures 45

46 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEACL
Contains information about an ACL on an object.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 entryID ;
 uint32 attrID ;
 uint32 privileges ;
} DSEACL;

Fields
entryID

Specifies the local ID for the object that received the rights.

attrID
Specifies the ID of the attribute for which the rights apply.

privileges
Specifies the effective privilege set for subject/object or subject/attribute pair.

Remarks
This structure is used to fill a parameter in the DSEVALData (page 75) structure.

The special attributes, [All Attribute Rights] and [Entry Rights] have local IDs.

Privileges are defined as follows.

Table 4-1 All Attribute Rights

C Value Pascal Value Value Name

0x00000001L $00000001 DS_ATTR_COMPARE

0x00000002L $00000002 DS_ATTR_READ

0x00000004L $00000004 DS_ATTR_WRITE

0x00000008L $00000008 DS_ATTR_SELF

0x00000020L $00000020 DS_ATTR_SUPERVISOR

0x00000040L $00000040 DS_ATTR_INHERIT_CTL
tory Event Services

novdocx (E
N

U
) 01 February 2006
Table 4-2 Entry Rights

C Value Pascal Value Value Name

0x00000001L $00000001 DS_ENTRY_BROWSE

0x00000002L $00000002 DS_ENTRY_ADD

0x00000004L $00000004 DS_ENTRY_DELETE

0x00000008L $00000008 DS_ENTRY_RENAME

0x00000010L $00000010 DS_ENTRY_SUPERVISOR

0x00000040L $00000040 DS_ENTRY_INHERIT_CTL
Structures 47

48 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEBackLink
Contains information about a server holding a back link.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 serverID ;
 unit32 remoteID ;
} DSEBackLink;

Fields
serverID

Specifies the local ID for the server that knows about the object.

remoteID
Specifies the object’s local ID on the remote server specified by serverID.

Remarks
The Back Link syntax is used to identify a server that knows about the object that owns the Back
Link information. This structure is used to fill a parameter in the DSEVALData (page 75) structure.
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEBinderyObjectInfo
Contains information about a bindery object associated with an event.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 entryID ;
 uint32 parentID ;
 uint32 type ;
 uint32 emuObjFlags ;
 uint32 security ;
 char name [48];
} DBEBinderyObjectInfo;

Fields
entryID

Specifies the local ID for the Directory object that is being created to represent the bindery
object.

parentID
Specifies the local ID for the parent of the object specified by entryID.

type
Specifies the bindery object type.

emuObjFlags
Specifies the bindery object flags.

security
Specifies the bindery object security.

name
Specifies the name of the bindery object.

Associated Events
DSE_CREATE_BINDERY_OBJECT
DSE_DELETE_BINDERY_OBJECT
Structures 49

50 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEBitString

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 numberOfBits ;
 uint32 numberOfBytes ;
 char data ;
} DSEBitString;

Fields
numberOfBits

Specifies the number of bits in the bit string.

numberOfBytes
Specifies the number of bytes in the bit string.

data
Specifies the data for the string.

Remarks
Bit strings are padded to 4-byte boundaries.

This structure is used to fill a parameter in the DSEFaxNumber (page 62) structure.
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEChangeConnState
Contains information about a connection whose state is being changed

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 connID ;
 uint32 entryID ;
 uint32 oldFlags ;
 uint32 newFlags ;
} DSEChangeConnState;

Fields
connID

Specifies the local ID for the connection whose state is being changed.

entryID
Specifies the entryID of the object that owns the authenticated connection.

oldFlags
Specifies the flag associated with the previous connection state.
oldFlags can have one of the following values:

C Value Value Name

0x0001 DSE_CONN_VALID

0x0002 DSE_CONN_AUTHENTIC

0x0004 DSE_CONN_SUPERVISOR

0x0008 DSE_CONN_OPERATOR

0x0010 DSE_CONN_LICENSED

0x0020 DSE_CONN_SEV_IS_STALE

0x0040 DSE_CONN_IS_NCP

0x0080 DSE_CONN_CHECKSUMMING

0x00FF DSE_CONN_OPERATIONAL_FLAGS

0x0100 DSE_CONN_SIGNATURES

0x0200 DSE_CONN_CSIGNATURES

0x0400 DSE_CONN_ENCRYPTION
Structures 51

52 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
newFlags
Specifies the flag that indicates the new connection state. Uses the same flags as oldFlags.

Associated Events
DSE_CHANGE_CONN_STATE

0x0700 DSE_CONN_SECURITY_FLAGS

C Value Value Name
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSECIList

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 numberOfStrings ;
 uint32 length1 ;
 unicode string [1];
} DSECIList;

Fields
numberOfStrings

Specifies the number of strings the structure holds.

length1
Specifies the length (in bytes) of the first string.

string
Specifies the location of the first string.

Remarks
The strings in this structure are null terminated, and aligned on 4-byte boundaries. If necessary, the
strings are padded to fit those boundaries. The value in length does not include the bytes used for
padding.

The first uint32 (4 bytes) after the first string contains the length of the second string. The second
string follows the length. Any remaining strings follow this pattern.

The Unicode strings are in Intel format, lo-hi order.
Structures 53

54 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEDebugInfo
Contains DSTrace information corresponding to the information in DSTraceInfo.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 dstime, milliseconds ;
 uint32 curThread ;
 uint32 connID ;
 uint32 perpetratorID ;
 char *fmtStr ;
 char *parms ;
 char data ;
} DSEDebugInfo;

Fields
dstime, milliseconds

Specifies the time the event occurred.

curThread
Specifies the thread that was running when the event occurred.

connID
Specifies the number of the connection that generated the event.

perpetratorID
Specifies the local ID for the object that requested the action. For example, Admin.Acmecorp
that an entry be created.

fmtStr
Points to a sprintf type format string describing the parameters.

parms
Points to a pseudo-stack, or variable argument list, of parameters.

data
Specifies the parameter data.

Associated Events
All events having a DSE_DB_ prefix.
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEEmailAddress
Contains e-mail addresses being reported in an event.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 type ;
 uint32 length ;
 unicode address [1 /*or more*/];
} DSEEmailAddress;

Fields
type

Specifies the type of the e-mail address.

length
Specifies the length of the first e-mail address.

address
Specifies the location where the first e-mail address begins.

Remarks
type can be either zero or one.

If type is set to zero, the address is an e-mail address, in the form of
non_MHS_Email_Protocol:non_MHS_Email_Address. Where non_MHS_Email_Protocol is a 1-8
character string, and non-MHS-Email_Address is a string for the actual address value, such as the
following:

SMTP:JohnD@Novell.Com

If type is set to one, the address is an E-mail alias, in the form of non-MHS_Email_Protocol:non-
MHS_Email_Alias. Where non_MHS_Email_Protocol is a 1-8 character string, and non-
MHS_Email_Address is a string for the actual alias value, such as the following:

SMTP:JohnD@Novell.Com
Structures 55

56 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEEntryInfo
Contains information about an entry involved in a DSEvent (returned for NetWare® 4.x events).

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 perpetratorID ;
 uint32 verb ;
 uint32 entryID ;
 uint32 parentID ;
 uint32 classID ;
 uint32 flags ;
 DSETimeStamp creationTime ;
 const unicode *dn ;
 const unicode *newDN ;
 char data [1];
} DSEEntryInfo;

Fields
perpetratorID

Specifies the local ID for the object that requested the action. For example, Admin.Acmecorp
requesting that an entry be created.

verb
Specifies the action that caused the event to occur. These verbs, such as
DSV_MODIFY_ENTRY are defined in NWDSDEFS.H.

entryID
Specifies the local ID for the object that was acted upon.

parentID
Specifies the local ID for the parent of the object that was acted upon.

classID
Specifies the local ID for the object class type, such as User, of the object that was acted upon.
This value is not set for DSE_CREATE_ENTRY events.

flags
Specifies the flags identifying the object type. For most object types, flags will be set to zero.
For partition roots, external references, and aliases, flags will have the following values:

0x0001 DSEF_PARTITION_ROOT
0x0002 DSEF_EXTREF
0x0004 DSEF_ALIAS
tory Event Services

novdocx (E
N

U
) 01 February 2006
creationTime
Specifies the creation time of the object that is associated with entryID and points to
DSETimeStamp (page 71).

dn
Points to the distinguished name of the object that was acted upon.

newDN
Points to the new distinguished name of the object that was acted upon. This is valid only if the
object’s distinguished name has been changed.

data
Specifies the location where the data is stored for the dn and the newDN fields. (Do not access
this data directly. Access it through the dn and newDN fields.)

Remarks
NetWare® 4.x events return this structure. NetWare 5.x events return DSEEntryInfo2. The
distinguished names pointed to by dn and newDN are not in a form that is consistent with the names
used by the eDirectory functions. To use these names, you must convert the names to the proper
form by calling NWDSEConvertEntryName.
Structures 57

58 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEEntryInfo2
Contains information about an entry involved in a DSEvent (returned for NetWare® 5.x events).

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 perpetratorID ;
 uint32 verb ;
 uint32 entryID ;
 uint32 parentID ;
 uint32 classID ;
 uint32 flags ;
 DSETimeStamp creationTime ;
 const unicode *dn ;
 const unicode *newDN ;
 uint32 *connID ;
 char data [1];
} DSEEntryInfo;

Fields
perpetratorID

Specifies the local ID for the object that requested the action. For example, Admin.Acmecorp
creating an entry.

verb
Specifies the action that caused the event to occur. These verbs, such as
DSV_MODIFY_ENTRY, are defined in NWDSDEFS.H.

entryID
Specifies the local ID for the object that was acted upon.

parentID
Specifies the local ID for the parent of the object that was acted upon.

classID
Specifies the local ID for the object class type, such as User, of the object that was acted upon.

flags
Specifies the flags identifying the object type. For most object types, flags will be set to zero.
For partition roots, external references, and aliases, flags will have the following values:

0x0001 DSEF_PARTITION_ROOT
0x0002 DSEF_EXTREF
0x0004 DSEF_ALIAS
tory Event Services

novdocx (E
N

U
) 01 February 2006
creationTime
Specifies the creation time of the object that is associated with entryID and points to
DSETimeStamp (page 71).

dn
Points to the distinguished name of the object that was acted upon.

newDN
Points to the new distinguished name of the object that was acted upon. This is valid only if the
object’s distinguished name has been changed.

connID
Specifies the connection that generated the event.

data
Specifies the location where the data is stored for the dn and the newDN fields. (Do not access
this data directly. Access it through the dn and newDN fields.)

Remarks
NetWare 5.x events return this structure. NetWare® 4.x events return DSEEntryInfo. The
distinguished names pointed to by dn and newDN are not in a form that is consistent with the names
used by the eDirectory functions. To use these names, you must convert the names to the proper
form by calling NWDSEConvertEntryName.
Structures 59

60 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEEventData
Contains data from a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 dsTime, milliseconds ;
 uint32 curProcess ;
 uint32 connID ;
 uint32 verb ;
 uint32 perpetratorID ;
 uint32 d1 ;
 uint32 d2 ;
 uint32 d3 ;
 uint32 d4 ;
 uint32 dataType ;
 const void *dataPtr ;
 char data ;
} DSEventData;

Fields
dsTime

Specifies the time in milliseconds when the event occurred.

curProcess
Specifies the process that was running when the event occurred.

connID
Specifies the number of the connection that generated the event.

verb
Specifies the eDirectory verb that generated the event.

perpetratorID
Specifies the local ID for the object that requested the action. For example, Admin.Acmecorp
requesting that an entry be created.

d1
The contents of this field depend on the type of event.

d2
The contents of this field depend on the type of event.

d3
tory Event Services

novdocx (E
N

U
) 01 February 2006
The contents of this field depend on the type of event.

d4
The contents of this field depend on the type of event.

dataType
Specifies the type of data.

dataPtr
Points to the event data.

data
The event data.

Associated Events
DSE_PARTITION_OPERATION_EVENT
Events 53 through 203, except as noted in “Values” on page 79 .
Structures 61

62 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEFaxNumber
Contains a fax number associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 length ;
 unicode telephoneNumber [1 /*or more*/];
 DSEBitString parameters ;
} DSEFaxNumber;

Fields
length

Specifies the number of characters used in the telephone number.

telephoneNumber
Specifies the telephone number.

parameters
Specifies a bit string containing additional information and points to DSEBitString (page 50).
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEHold
Contains information about server holds associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 entryID ;
 uint32 amount ;
} DSEHold;

Fields
entryID

Specifies the ID of the object that owns the accounting information.

amount
Specifies the number of charges that are on hold.

Remarks
See the “Server Holds” attribute in the eDirectory Schema Reference to see how this information is
used.
Structures 63

64 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEModuleState
Contains information about a module state that is being changed.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 connID ;
 uint32 flags ;
 long handle ;
 unicode name [DSE_MAX_MODULE_NAME_CHARS];
} DSEModuleState;

Fields
connID

Specifies the connection used by the module.

flags
Specifies a flag identifying the module’s state. Flags can have the following values:

0x01 DSE_MOD_CHANGING
0x02 DSE_MOD_LOADED
0x04 DSE_MOD_AUTOLOAD
0x08 DSE_MOD_HIDDEN
0x10 DSE_MOD_ENGINE
0x20 DSE_MOD_AUTOMATIC
0x40 DSE_MOD_DISABLED
0x80 DSE_MOD_MANUAL
0x100 DSE_MOD_SYSTEM
0x200 DSE_MOD_WAITING
When the Changing flag is combined with the Loaded flag, they indicate that the module is
starting to load. When the Changing flag is not combined with the Loaded flag, it indicates that
the module is starting to unload.
The Waiting flag indicates that a state change for the module has been queued.

handle
Specifies the module handle.

name
Specifies the name used by the module. The maximum number of characters in the module
name is 32.
tory Event Services

novdocx (E
N

U
) 01 February 2006
Associated Events
DSE_CHANGE_MODULE_STATE
Structures 65

66 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSENetAddress
Contains a network address associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 type ;
 uint32 length ;
 uint8 data [1];
} DSENetAddress;

Fields
type

Specifies the type of the address.

length
Specifies the number of bytes in which the address is stored.

data
Specifies the place where the network address is stored.

Remarks
type can have the following values:

NT_IPX
NT_IP
NT_SDLC
NT_TOKENRING_ETHERNET
NT_OSI
NT_APPLETALK
NT_COUNT

The address is stored as a binary string. This string is the literal value of the address. To display it as
a hexadecimal value, you must convert each 4-bit nibble to the correct character (0,1,2,3,...F).

For two net addresses to match, the type, length, and value of the addresses must match.
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEOctetList
Contains a list of strings associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 numOfStrings ;
 uint8 string1 ;
} DSEOctetList;

Fields
numOfStrings

Specifies the number of strings contained in the structure.

string1
Specifies the location of the data for the strings.

Remarks
The strings are length preceded.
Structures 67

68 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSEPath
Contains a path associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 nameSpaceType ;
 uint32 volumeEntryID ;
 uint32 length ;
 uint8 data [1];
} DSEPath;

Fields
nameSpaceType

Specifies the type of the name space.

volumeEntryID
Specifies the local ID for the volume where the path is located.

length
Specifies the length of the path.

data
Specifies the location where the path is stored.

Remarks
The following name-space types have been defined:

DS_DOS
DS_MACINTOSH
DS_UNIX
FTAM
OS/2
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEReplicaPointer
Contains a replica pointer associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 serverID,
 uint32 type ;
 uint32 number ;
 uint32 replicaRootID ;
 char referral [1];
} DSEReplicaPointer;

Fields
serverID

Specifies the local ID for the name server that holds the replica.

type
Specifies the replica type.

number
Specifies the replica number.

replicaRootID
Specifies the remote ID for the object that is the partition root. This is the replica root’s local ID
on the remote server.

referral
Specifies an array of network addresses for the server specified in serverID.

Remarks
These types of partitions are defined as follows:

RT_MASTER
RT_SECONDARY
RT_READONLY
RT_SUBREF

A server can have more than one address, such as IPX and IP.
Structures 69

70 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSESEVInfo
Contains a Security Equivalence Vector associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 entryID ;
 uint32 retryCount ;
 uint32 valueID ;
 unicode valueDN [MAX_DN_CHARS + 1];
 char referral ;
} DBESEVInfo;

Fields
entryID

Specifies the local ID for the Directory object whose Security Equivalence Vector (SEV) is
being checked.

retryCount
Reserved.

valueID
Reserved.

valueDN
Specifies the distinguished name of an object or group being checked.

referral
Specifies the server holding the object designated in the valueDN parameter.

Associated Events
DSE_CHECK_SEV
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSETimeStamp
Contains a time stamp associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 seconds ;
 uint16 replicaNumber ;
 uint16 event ;
} DSETimeStamp;

Fields
seconds

Specifies in seconds when the event occurred. Zero equals 12:00 midnight, January 1, 1970,
UTC.

replicaNumber
Specifies the number of the replica on which the change or event occurred.

event
Specifies an integer that further orders events occurring within the same whole-second interval.

Remarks
Two time stamp values are compared by comparing the seconds fields first and the event fields
second. If the seconds fields are unequal, order is determined by the seconds field alone. If the
seconds fields are equal, and the eventID fields are unequal, order is determined by the eventID
fields. If the seconds and the event fields are equal, the time stamps are equal.
Structures 71

72 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSETraceInfo
Contains information about a DSTrace event. DSTrace events are now handled by the DSE_DB_
events and use the DSEDebugInfo structure.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 unsigned long traceVector1 ;
 unsigned long traceVector2 ;
 unsigned long dstime ;
 unsigned long milliseconds ;
 char string [1024];
} DSETraceInfo;

Fields
traceVector1

Specifies a bit flag identifying the type of trace event.

traceVector2
Reserved.

dstime
Specifies in seconds when the event occurred. Zero equals 12:00 midnight, January 1, 1970,
UTC.

milliseconds
Specifies a further ordering (in milliseconds) of the time specified by dstime.

string
Specifies a string containing a message about the event.

Remarks
Your application should not depend upon the text strings in the DSETraceInfo structure. eDirectory
Trace Information is for internal development purposes. The text strings returned in string may
change with any version of the OS.

The bits of the traceVector1 field are defined as follows:

Bit Meaning

TV_ON If set, tracing is enabled. This bit will always be set
when trace events are received.
tory Event Services

novdocx (E
N

U
) 01 February 2006
Associated Events
DSE_OBSOLETE_TRACE

TV_AUDIT Auditing

TV_INIT Initialization

TV_FRAGGER Fragger

TV_MISC Miscellaneous

TV_RESNAME Resolve name

TV_STREAMS Streams

TV_LIMBER Limber

TV_JANITOR Janitor

TV_BACKLINK Backlink

TV_MERGE Merge

TV_SKULKER Skulker

TV_LOCKING Locking

TV_SAP SAP

TV_SCHEMA Schema

TV_COLL Collisions

TV_INSPECTOR Inspector

TV_ERRORS Errors

TV_PART Partition operations

TV_EMU Bindery Emulator

TV_VCLIENT Virtual Client

TV_AUTHEN Authentication

TV_RECMAN Record Manager

TV_TIMEVECTOR Time vectors

TV_REPAIR DS_Repair

TV_DSAgent Low-level DSA tracing

TV_ERRET ERRET and ERRTRACE

TV_SYNC_IN Incoming sync traffic

TV_THREADS DS thread scheduling

TV_MIN Default DSTRACE messages

TV_CHECK_BIT All TV_ values must have this bit

Bit Meaning
Structures 73

74 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
DSETypedName
Contains a Typed Name structure associated with a DSEvent.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 entryID ;
 uint32 level ;
 uint32 interval ;
} DSETypedName;

Fields
entryID

Specifies the local ID for the object.

level
Specifies the priority.

interval
Specifies the frequency of reference.

Remarks
The meaning of the information for this structure is determined by the attribute to which the
information belongs.
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEVALData
Contains information about an attribute value.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef union
{
 unicode string [1/*or more*/];
 uint32 num ;
 uint32 entryID ;
 uint32 classID ;
 uint8 boolean ;
 DSENetAddress netAddress ;
 DSEPath path ;
 DSEReplicaPointer replica ;
 DSEACL acl ;
 DSETimeStamp timeStamp ;
 DSEBackLink backLink ;
 DSETypedName typedName ;
 DSEHold hold ;
 DSEEmailAddress emailAddress ;
 DSEFaxNumber faxNumber ;
 DSECIList ciList ;
 uint8 octedString [1];
 DSEOctetList octetList ;
} DSEValData;

Fields
string

Specifies the following syntaxes:

Case Exact String
Case Ignore String
Numeric String
Printable String
Telephone Number

num
Specifies the following syntaxes:

Counter
Integer
Interval
Time

entryID
Structures 75

76 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
Specifies the distinguished name.

classID
Specifies the class name.

boolean
Specifies a Boolean string value.

netAddress
Specifies DSENetAddress (page 66).

path
Specifies DSEPath (page 68).

replica
Specifies DSEReplicaPointer (page 69).

acl
Specifies DSEACL (page 46).

timeStamp
Specifies DSETimeStamp (page 71).

backLink
Specifies DSEBackLink (page 48).

typedName
Specifies DSETypedName (page 74)

hold
Specifies DSEHold (page 63).

emailAddress
Specifies DSEEmailAddress (page 55).

faxNumber
Points to DSEFaxNumber (page 62).

ciList
Points to DSECIList (page 53).

octetString
Indicates the octet string stream.

octetList
Points to DSEOctetList (page 67).
tory Event Services

novdocx (E
N

U
) 01 February 2006
DSEValueInfo
Contains information about an attribute value.

Service: eDirectory Event

Defined In: nwdsevnt.h

Structure
typedef struct
{
 uint32 perpetratorID ;
 uint32 verb ;
 uint32 entryID ;
 uint32 attrID ;
 uint32 syntaxID ;
 uint32 classID ;
 DSETimeStamp timeStamp ;
 unsigned size ;
 char data [1];
} DSEValueInfo;

Fields
perpetratorID

Specifies the local ID for the object that requested the action. (For example, Admin.Acmecorp
requesting that a phone number be added.)

verb
Specifies the action that caused the event to occur. These verbs, such as
DSV_MODIFY_ENTRY, are defined in NWDSDEFS.H.

entryID
Specifies the local ID for the object that was acted upon.

attrID
Specifies the local ID that identifies the type of schema attribute that was changed.

syntaxID
Specifies the syntax that the data is stored by.

classID
Specifies the local ID that identifies the class of the object identified by entryID.

timeStamp
Specifies the time when the event occurred and points to DSETimeStamp (page 71).

size
Specifies the size (in bytes) of the information stored in the location identified by data.
Structures 77

78 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
data
Specifies the information that further identifies the changes that were made.

Remarks
The information stored in the data field of this structure is stored in a union called DSEVALData
(page 75).

Associated Events
DSE_ADD_VALUE
DSE_CLOSE_STREAM
DSE_DELETE_ATTRIBUTE
DSE_DELETE_VALUE
tory Event Services

5
novdocx (E

N
U

) 01 February 2006
5Values

This section describes the values used by Novell® eDirectoryTM Event Services functions and
structures.

• Section 5.1, “Event Priorities,” on page 79
• Section 5.2, “Event Types,” on page 80

5.1 Event Priorities
The functions for registering and unregistering eDirectory events are NWDSERegisterForEvent
(page 38) and NWDSEUnRegisterForEvent (page 43), both of which require values for the priority,
type, and handler parameters. The priority parameter can have one of the following values:

EP_INLINE Provides synchronous pre-event reporting because the callback can determine
whether or not the event is allowable. If the callback returns a nonzero value, the
transaction is aborted and the callback’s return value is returned to the module that
created the event.

Since the module that created the event waits for a response while the callback
processes, callbacks need to return as quickly as possible.

The callback can sleep, but usually only sleeps to allocate memory.

A zero (0) return value indicates success. A nonzero value indicates failure.

This priority is the most difficult one to use for chained event handlers. You cannot
assume that an eDirectory event will complete if your callback returns zero. The next
callback in the chain could abort the transaction. To verify changes occurred,
register a callback for the DSEP_JOURNAL or DSEP_WORK priorities.

Warning: While inside this callback, use discretion in calling functions that create
more eDirectory events. This is a closed loop where the growth of the journal queue
could be uncontrollable.

EP_JOURNAL Provides synchronous post-event reporting because event information is stored in a
journal queue that records the events in the order they occurred.

A single thread services all of the callbacks for the events, so the callback’s
execution time should be minimized. One method is to have the callback determine
if the data should be used. If it should be used, the callback stores the data in a list
that another thread processes.

If multiple callbacks are registered for the same event, the current callback must be
processed before the next callback is called.

The callback can sleep.
Values 79

80 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
5.2 Event Types
The type parameter describes the type of event being registered. There are more than 200 event
types, and they are described in the following tables. For each type of event, a structure is returned
that contains information specific to that type of event. Each type in the following table returns a
DSEEntryInfo (page 56) structure, except where noted.

Note that for events using the DSEEntryInfo (page 56) structure, NetWare 4.x returns DSEEntryInfo
(page 56) ; NetWare 5.x returns a DSEEntryInfo2 (page 58) structure

EP_WORK Provides asynchronous post-event reporting because events are reported after they
occur, but not necessarily in the order they occurred. They are reported only after all
of the event’s callbacks registered for the EP_JOURNAL priority have completed.

Each callback is run on a separate thread. This frees the event handler from the time
constraints of the other two priorities.

The callback can sleep.

Time is not a critical issue with this priority.

Event Type Structure Returned

1 DSE_CREATE_ENTRY: A new eDirectory object has been created. DSEEntryInfo

2 DSE_DELETE_ENTRY: An existing eDirectory object has been deleted. DSEEntryInfo

3 DSE_RENAME_ENTRY: An existing eDirectory object has been
renamed.

DSEEntryInfo

4 DSE_MOVE_SOURCE_ENTRY: This is the second of two events
reported for a move operation. This event specifies the deletion of a
eDirectory object from its original location in the Directory tree. (See
DSE_MOVE_DEST_ENTRY.

DSEEntryInfo

5 DSE_ADD_VALUE: A value has been added to an object attribute. DSEValueInfo
(page 77)

6 DSE_DELETE_VALUE: A value has been deleted from an object
attribute.

DSEValueInfo
(page 77)

7 DSE_CLOSE_STREAM: A Stream attribute has been closed. DSEValueInfo
(page 77)

8 DSE_DELETE_ATTRIBUTE: An attribute has been deleted from an
object. This generates DSE_DELETE_VALUE events for values
associated with the attribute. The DSE_DELETE_VALUE events occur
after the DSE_DELETE_ATTRIBUTE event.

DSEValueInfo
(page 77)

9 DSE_SET_BINDERY_CONTEXT: The bindery context has been set on
the server.

No data is associated
with this event.

10 DSE_CREATE_BINDERY_OBJECT: A bindery object has been created. DSEBinderyObjectInfo
(page 49)

11 DSE_DELETE_BINDERY_OBJECT: A bindery object has been deleted. DSEBinderyObjectInfo
(page 49)

12 DSE_CHECK_SEV: The Security Equivalence Vector has been checked. DSESEVInfo
tory Event Services

novdocx (E
N

U
) 01 February 2006
The events described in the following table are debug trace events, which correspond to the older
DSTrace type TV_. All use the DSEDebugInfo (page 54) structure, and the result field is always 0
(zero).

13 DSE_UPDATE_SEV: The Security Equivalence Vector has been updated. No data is associated
with this event.

14 DSE_MOVE_DEST_ENTRY: This is the first of two events reported for a
move operation. This event specifies the placement of the eDirectory
object into its new location in the Directory tree. (See
DSE_MOVE_SOURCE_ENTRY.) This generates DSE_ADD_VALUE
events for all of the values associated with the object.

DSEEntryInfo

15 DSE_DELETE_UNUSED_EXTREF: An unused external reference has
been deleted.

DSEEntryInfo

16 DSE_OBSOLETE_TRACE: A DSTrace event has occurred. The specific
DSTrace event is designated by a TV_ flag returned in the DSETraceInfo
structrue

DSETraceInfo
(page 72)

17 DSE_REMOTE_SERVER_DOWN: A remote server has gone down. DSENetAddress

18 DSE_NCP_RETRY_EXPENDED: The number of retries for an NCPTM
request has been expended.

DSENetAddress

19 DSE_REMOTE_CONN_CLEARED: A remote connection has been
cleared.

DSENetAddress

20 DSE_PARTITION_OPERATION_EVENT: A partition operation has
occurred.

DSEEventData

21 DSE_CHANGE_MODULE_STATE: The eDirectory module’s state has
changed.

DSEModuleState
(page 64)

22 DSE_RESERVED_2: Not used.

23 DSE_RESERVED_3: Not used

24 DSE_RESERVED_4: Not used.

25 DSE_RESERVED_5: Not used.

Event Type Structure Returned

26 DSE_DB_AUTHEN: An authentication debug message has been sent. DSEDebugInfo

27 DSE_DB_BACKLINK: A backlink debug message has been sent. DSEDebugInfo

28 DSE_DB_BUFFERS: A request buffer debug message has been sent. DSEDebugInfo

29 DSE_DB_COLL: A collision debug message has been sent. DSEDebugInfo

30 DSE_DB_DSAGENT: A low-level DSAgent debug message has been
sent.

DSEDebugInfo

31 DSE_DB_EMU: A Bindery emulation debug message has been sent. DSEDebugInfo

32 DSE_DB_FRAGGER: A Fragger debug message has been sent. DSEDebugInfo

33 DSE_DB_INIT: An initialization debug message has been sent. DSEDebugInfo

Event Type Structure Returned
Values 81

82 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
Most of the events described in the following table use theDSEEventData (page 60) structure. The
Data Returned column indicates the structure returned for those events that do not use the
DSEventData structure.

For the events using the DSEEventData structure, not all the fields are filled in for each event, so the
Data Returned column lists the fields and their content for each event. Unused fields are set to -1 for
IDs or values, or are set to 0 (zero) for pointers.

34 DSE_DB_INSPECTOR: An inspector debug message has been sent. DSEDebugInfo

35 DSE_DB_JANITOR: A Janitor process debug message has been sent. DSEDebugInfo

36 DSE_DB_LIMBER: A Limber process debug message has been sent. DSEDebugInfo

37 DSE_DB_LOCKING: A locking debug message has been sent. DSEDebugInfo

38 DSE_DB_MOVE: A move debug message has been sent. DSEDebugInfo

39 DSE_DB_MIN: A default DSTrace (equivalent to ON) debug message has
been sent.

DSEDebugInfo

40 DSE_DB_MISC: A miscellaneous debug message has been sent DSEDebugInfo

41` DSE_DB_PART: A partition operations debug message has been sent. DSEDebugInfo

42 DSE_DB_RECMAN: A Record Manager debug message has been sent. DSEDebugInfo

43 DSE_DB_OBSOLETEREPAIR: Not used. DSEDebugInfo

44 DSE_DB_RESNAME: A Resolve Name debug message has been sent. DSEDebugInfo

45 DSE_DB_SAP: A SAP debug message has been sent. DSEDebugInfo

46 DSE_DB_SCHEMA: A schema debug message has been sent. DSEDebugInfo

47 DSE_DB_SKULKER: A synchronization debug message has been sent. DSEDebugInfo

48 DSE_DB_STREAMS: A streams debug message has been sent. DSEDebugInfo

49 DSE_DB_SYNC_IN: An incoming synchronization debug message has
been sent.

DSEDebugInfo

50 DSE_DB_THREADS: An eDirectory thread scheduling debug message
has been sent.

DSEDebugInfo

51 DSE_DB_TIMEVECTOR: A time vectors debug message has been sent. DSEDebugInfo

52 DSE_DB_VCLIENT: A virtual client debug message has been sent. DSEDebugInfo

Event Type Data Returned

53 DSE_AGENT_OPEN_LOCAL: The local Directory agent has been
opened.

d1: state (1: start, 0:
end).

The result is valid for
the end state only.

Outside the locks.
tory Event Services

novdocx (E
N

U
) 01 February 2006
54 DSE_AGENT_CLOSE_LOCAL: The local Directory agent has been
closed.

d1: state (1: start, 0:
end).

Outside the locks.

55 DSE_DS_ERR_VIA_BINDERY: An error was returned via the Bindery. d1: error code is
returned via the
bindery.

Outside the locks.

56 DSE_DSA_BAD_VERB: An incorrect verb number was given in a
DSAgent request.

d1: bad verb number
given to DSA request
(NCP 104, 2).

Outside the locks.

57 DSE_DSA_REQUEST_START: A DSAgent request has been started. d1: verb number (NCP
104, 2).

Outside locks.

58 DSE_DSA_REQUEST_END: A DSAgent request has completed. d1: verb number.

d2: primary ID.

d3: request size.

d4: reply size.

Not in locks.

59 DSE_MOVE_SUBTREE: A container and its subordinate objects have
been moved.

d1: source ID.

d2: destination ID.

Not in locks.

60 DSE_NO_REPLICA_PTR: A replica exists that has no replica pointer
associated with it.

d1: partition ID.

Inside locks.

61 DSE_SYNC_IN_END: Inbound synchronization has finished. d1: ID of server
sending changes.

d2: partition root ID.

d3: Number of entries
sent.

Outside the locks.

62 DSE_BKLINK_SEV: A backlink operation has updated an object’s Security
Equivalence Vector.

d1: ID of object being
updated.

Outside the locks

Event Type Data Returned
Values 83

84 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
63 DSE_BKLINK_OPERATOR: A backlink operation has changed an object’s
console operator privileges.

d1: ID of object whose
console operator
privileges were
changed.

d2: ID of server to
which privileges were
changed.

Outside the locks.

64 DSE_DELETE_SUBTREE: A container and its subordinate objects have
been deleted.

d1: ID of subtree root.

d2: count of objects
deleted.

Inside locks and
transaction.

65 DSE_SET_NEW_MASTER: A new master replica has been designated. d1: ID of partition
being changed.

Outside locks.

66 DSE_PART_STATE_CHG_REQ: A partition state change has been
requested.

d1: ID of partition.

d2: partnerPartID.

d3: (function<<16)
type.

d4: state.

67 DSE_REFERRAL: A referral has been created. d1: ID of local entry.

d2: ID of partition.

d3: referral type.

68 DSE_UPDATE_CLASS_DEF: A schema class definition has been
updated.

uname: name of
schema class
updated.

Inside locks and
transaction.

69 DSE_UPDATE_ATTR_DEF: A schema attribute definition has been
updated.

uname: name of
schema attribute
updated.

Inside locks and
transaction

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
70 DSE_LOST_ENTRY: eDirectory has encountered a lost entry. A lost entry
is an entry for which updates are being received, but no entry exists on the
local server.

d1: parent ID.

d2: time stamp of
event.

uname: Unicode name
of entry.

Inside locks and
transaction.

71 DSE_PURGE_ENTRY_FAIL: A purge operation on an entry has failed. d1: ID of entry that
failed.

Inside lock and
transaction.

72 DSE_PURGE_START: A purge operation has started. d1: ID of partition
being purged.

d2: replica type.

Inside lock.

73 DSE_PURGE_END: A purge operation has ended. d1: ID of partition
purged.

d2: number of entries.

d3: number of values
purged.

Outside of the locks.

74 DSE_FLAT_CLEANER_END: A Flatcleaner operation has completed. d1: number entries
purged.

d2: number of values
purged.

Outside of locks.

75 DSE_ONE_REPLICA: A partition has been encountered that has only one
replica. Novell® recommends that each partition have at least three
replicas for greater fault-tolerance.

d1: ID of partition with
only one replica.

Inside the locks.

76 DSE_LIMBER_DONE: A Limber operation has completed. d1: all initialized
(Boolean value).

d2: found new RDN
(Boolean value).

Outside locks.

77 DSE_SPLIT_DONE: A Split Partition operation has completed. d1: ID of parent
partition root.

d2: ID of child partition
root.

Outside locks.

Event Type Data Returned
Values 85

86 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
78 DSE_SYNC_SVR_OUT_START: Outbound synchronization has begun
from a particular server.

d1: ID of server.

d2: partition root ID.

d3: replica state, type,
and flags.

Outside locks.

79 DSE_SYNC_SVR_OUT_END: Outbound synchronization from a
particular server has finished.

d1: ID of server.

d2: partition root ID.

d3: objects sent.

d4: values sent.

Outside locks

80 DSE_SYNC_PART_START: Synchronization of a partition has begun. d1: partition ID.

d2: partition state.

d3: replica type.

Inside locks.

81 DSE_SYNC_PART_END: Synchronization of a partition has finished. d1: partition ID.

d2: All Processed
(Boolean value).

Outside locks.

82 DSE_MOVE_TREE_START: A Move Subtree operation has started. d1: ID of subtree root
being moved.

d2: destination
(parent) ID.

d3: server ID starting
from.

Outside locks.

83 DSE_MOVE_TREE_END: A Move Subtree operation has finished. d1: ID of subtree root
being moved.

d2: server ID starting
from.

Outside locks.

84 DSE_RECERT_PUB_KEY: An entry’s public key has been certified. d1: ID of entry whose
keys are being
certified.

Inside locks and
transaction.

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
85 DSE_GEN_CA_KEYS: Certificate of Authority keys have been generated. d1: ID of entry having
CA Keys generated.

Inside locks and
transaction.

86 DSE_JOIN_DONE: A Join Partitions operation has completed. d1: ID of parent
partition root.

d2: ID of child partition
root.

Inside locks.

87 DSE_PARTITION_LOCKED: A partition has been locked. d1: ID of partition
being locked.

Outside locks.

88 DSE_PARTITION_UNLOCKED: A partition has been unlocked. d1: ID of partition
being unlocked.

89 DSE_SCHEMA_SYNC: The schema has been synchronized. d1: allProcessed
(Boolean value).

Outside locks.

90 DSE_NAME_COLLISION: A name collision (two entries with the same
name) has occurred.

d1: ID of original entry.

d2: ID of duplicate
entry.

Inside locks and
transaction.

91 DSE_NLM_LOADED: An NLMTM has been loaded. d1: module handle of
NLM that was loaded.

Outside locks

92 Not used.

93 Not used.

94 DSE_LUMBER_DONE: A Lumber operation has completed. No parameters.

Outside locks.

95 DSE_BACKLINK_PROC_DONE: A backlink process has completed. No parameters.

Outside lock.

96 DSE_SERVER_RENAME: A server has been renamed. name: ASCII new
server name.

Inside locks.

Event Type Data Returned
Values 87

88 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
The events described in the following table are primarily used for auditing. Thus, whenever possible
the event is reported within a transaction, so an error can be returned and the transaction aborted if
necessary. All the events in the table use the DSEEventData (page 60) structure, but the fields are
used differently by each event. The Data Returned column describes the fields used by each event.

97 DSE_SYNTHETIC_TIME: To bring eDirectory servers into
synchronization, synthetic time has been invoked.

d1: root entry of
partition issuing time
stamp.

d2: partition ID.

d3: count of time
stamps requested.

Inside locks.

98 DSE_SERVER_ADDRESS_CHANGE: A server’s address has changed. No parameters.

Inside locks.

99 DSE_DSA_READ: A Read operation has been performed on an entry. d1: ID of entry being
read.

Outside locks.

Event Type Data Returned

100 DSE_LOGIN: A user has logged in. d1: parent ID.

d2: entry ID.

d3: usedNullPassword
(Boolean value).

d4: bindery login (0) or
NDS login (-1).

101 DSE_CHGPASS: A user’s password has changed. d1: parent ID.

d2: entry ID.

102 DSE_LOGOUT: A user has logged out. d1: parent ID.

d2: entry ID.

103 DSE_ADD_REPLICA: A replica of a partition has been added to a
server.

d1: partition root ID.

d2: server ID.

uname: server name.

104 DSE_REMOVE_REPLICA: A replica of a partition has been removed
from a server.

d1: partition root ID.

d2: server ID.

uname: server name.

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
105 DSE_SPLIT_PARTITION: A partition has been split. d1: parent partition root
ID.

d2: new partition root ID.

uname: new partition
entry name.

106 DSE_JOIN_PARTITIONS: A parent partition has been joined with a
child partition.

d1: parent partition root
ID.

d2: child partition root ID.

107 DSE_CHANGE_REPLICA_TYPE: A partition replica’s type has been
changed.

d1: partition root ID.

d2: target server ID.

d3: old type.

d4: new type.

108 DSE_ADD_ENTRY: An entry has been added beneath a container. d1: parent ID.

d2: entry ID.

uname: entry name (DSA
op).

name: entry name
(Bindery op).

109 DSE_ABORT_PARTITION_OP: A partition operation has been
aborted.

d1: parent ID.

d2: entry ID.

110 DSE_RECV_REPLICA_UPDATES: A replica has received an update
during synchronization.

d1: replica root ID

111 DSE_REPAIR_TIMESTAMPS: A replica’s time stamps have been
repaired.

d1: replica root ID

112 DSE_SEND_REPLICA_UPDATES: A replica has sent an update
during synchronization.

d1: replica root ID

113 DSE_VERIFY_PASS: A password has been verified. d1: parent ID.

d2: entry ID.

114 DSE_BACKUP_ENTRY: An entry has been backed up. d1: entry ID

115 DSE_RESTORE_ENTRY: An entry has been restored. d1: parent ID.

name: entry RDN.

116 DSE_DEFINE_ATTR_DEF: An attribute definition has been added to
the schema.

uname: attribute name.

117 DSE_REMOVE_ATTR_DEF: An attribute definition has been removed
from the schema.

d1: attr ID.

d2: schema root ID.

uname: attribute name.

Event Type Data Returned
Values 89

90 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
118 DSE_REMOVE_CLASS_DEF: A class definition has been removed
from the schema.

d1: class ID.

d2: schema root ID.

uname: class name.

119 DSE_DEFINE_CLASS_DEF: A class definition has been added to the
schema.

uname: class name.

120 DSE_MODIFY_CLASS_DEF: A class definition has been modified. d1: class ID.

d2: schema root ID.

uname: class name.

121 DSE_RESET_DS_COUNTERS: The internal NDS counters have been
reset.

d2: server ID.

122 DSE_REMOVE_ENTRY_DIR: A file directory associated with an entry
has been removed.

d1: parent ID.

d2: entry ID.

uname: entry name.

123 DSE_COMPARE_ATTR_VALUE: A Compare operation has been
performed on an attribute.

d1: parent ID.

d2: entry ID.

uname: attribute name.

124 DSE_STREAM: A stream attribute has been opened or closed Opening a stream:

d1:DSE_ST_OPEN.

d2: Entry ID.

d3: Attribute ID.

d4: Requested rights.

Closing a stream:

d1:DSE_ST_CLOSE.

d2: Entry ID.

d3: Attribute ID.

125 DSE_LIST_SUBORDINATES: A List Subordinate Entries operation
has been performed on a container object.

d1: parent ID.

d2: entry ID.

uname: entry name.

126 DSE_LIST_CONT_CLASSES: A List Containable Classes operation
has been performed on an entry.

d1: parent ID.

d2 entry ID.

uname: entry name.

127 DSE_INSPECT_ENTRY: An Inspect Entry operation has been
performed on an entry.

d1: parent ID.

d2: entry ID.

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
128 DSE_RESEND_ENTRY: A Resend Entry operation has been
performed on an entry.

d1: parent ID.

d2: entry ID.

129 DSE_MUTATE_ENTRY: A Mutate Entry operation has been performed
on an entry.

d1: entry ID.

d2: new class ID.

uname: new class name.

130 DSE_MERGE_ENTRIES: Two entries have been merged. d1: winner parent ID.

d2: winner entry ID.

uname: loser entry name.

131 DSE_MERGE_TREE: Two eDirectory trees have been merged. d1: root entry ID.

132 DSE_CREATE_SUBREF: A subordinate reference has been created. d1: subref ID.

133 DSE_LIST_PARTITIONS: A List Partitions operation has been
performed.

d1: partition root entry ID.

134 DSE_READ_ATTR: An entry’s attributes have been read. d1: entry ID.

d2: attribute ID.

135 DSE_READ_REFERENCES: The references on a given object have
been read.

d1: entry ID

136 DSE_UPDATE_REPLICA: An Update Replica operation has been
performed on a partition replica.

d1: partition root ID.

d2: entry ID.

uname: entry name.

137 DSE_START_UPDATE_REPLICA: A Start Update Replica operation
has been performed on a partition replica.

d1: partition root ID.

138 DSE_END_UPDATE_REPLICA: An End Update Replica operation has
been performed on a partition replica.

d1: partition root ID.

139 DSE_SYNC_PARTITION: A Synchronize Partition operation has been
performed on a partition replica.

d1: partition root ID.

140 DSE_SYNC_SCHEMA: The schema has been synchronized. d1: tree root ID.

141 DSE_CREATE_BACKLINK: A backlink has been created. d1: tree root ID.

d2: ID of server making
request.

d3: local entry ID.

d4: remote entry ID.

Event Type Data Returned
Values 91

92 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
142 DSE_CHECK_CONSOLE_OPERATOR: An object has been checked
for Console Operator rights.

d1: tree root ID.

d2: server ID.

d3: isOperator (Boolean).

d4: ID of object being
checked.

143 DSE_CHANGE_TREE_NAME: The tree name has been changed. d1: tree root ID.

uname: new tree name.

144 DSE_START_JOIN: A Start Join operation has been performed. d1: parent partition root
ID.

d2: child partition root ID.

145 DSE_ABORT_JOIN: A Join operation has been aborted. d1: parent partition root
ID.

d2: child partition root ID.

146 DSE_UPDATE_SCHEMA: An Update Schema operation has been
performed.

d1: tree root ID.

d2: server ID.

147 DSE_START_UPDATE_SCHEMA: A Start Update Schema operation
has been performed.

d1: tree root ID.

d2: server ID.

148 DSE_END_UPDATE_SCHEMA: An End Update Schema operation
has been performed.

d1: tree root ID.

d2: server ID.

149 DSE_MOVE_TREE: A Move Tree operation has been performed. d1: parent ID.

150 DSE_RELOAD_DS: eDirectory has been reloaded. d1: tree root ID.

151 DSE_ADD_PROPERTY: An attribute (property) has been added to an
object.

d1: object ID.

d3: security.

d4: flags.

name: object name.

152 DSE_DELETE_PROPERTY: An attribute (property) has been removed
from an object.

d1: object ID.

name: object name.

153 DSE_ADD_MEMBER: A member has been added to a Group object. d1: object ID.

d3: member ID.

name: property name.

154 DSE_DELETE_MEMBER: A member has been deleted from a Group
object.

d1: object ID.

d3: member ID.

name: property name.

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
155 DSE_CHANGE_PROP_SECURITY: Security for a bindery object’s
property has been changed.

d1: object ID.

d3: new security.

name: property name.

156 DSE_CHANGE_OBJ SECURITY: A bindery object’s security has been
changed.

d1: object parent ID

d2: object ID

d3: new security

157 DSE_READ_OBJ_INFO: A Read Object Info operation has been
performed on an object.

d1: parent ID.

d2: entry ID.

158 DSE_CONNECT_TO_ADDRESS: A connection has been established
with a particular address.

d1: task ID.

d3: address type.

d4: address size.

name: address data.

159 DSE_SEARCH: A Search operation has been performed. d1: base object ID

d2: scope

d3: nodes to search (not
used)

d4: information type

160 DSE_PARTITION_STATE_CHG: A partition’s state has changed. d1: parition root ID.

d2: partnerPartID.

d3: (function<<16)|type.

d4: state.

161 DSE_REMOVE_BACKLINK: A backlink has been removed. d1: object ID affected.

d2: server ID of removed
backlink.

d3: remote ID of removed
backlink.

162 DSE_LOW_LEVEL_JOIN: A low-level join has been performed. d1: parent partition root
ID.

d2: child partition root ID.

163 DSE_CREATE_NAMEBASE: The Directory namebase has been
created.

No data returned.

Outside lock.

Event Type Data Returned
Values 93

94 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
164 DSE_CHANGE_SECURITY_EQUALS: An object’s Security Equals
attribute has been changed.

d1: object ID.

d2: equivalent ID.

d3: 0=delete, 1=add
equivalence.

Inside locks and
transaction.

165 DSE_DB_OBSOLETEGUID: A globally unique ID debug message has
been sent.

GUID library and service.

166 DSE_DB_NCPENG: An NCPENG debug message has been sent. DSEDebugInfo (page 54)

167 DSE_CRC_FAILURE: A CRC failure has occurred when fragmented
NCP requests were reconstructed.

d1: CRC failure type
(0=server, 1=client).

d2: server/client CRC
error count.

168 DSE_ADD_ENTRY: A new object has been added under a container
object.

d1: Parent ID.

d2: object ID.

Success returns
DSE_DATATYPE_
STRUCT1

169 DSE_MODIFY_ENTRY: An attribute has been modified on an object. d1: Parent ID.

d2: object ID.

Success returns
DSE_DATATYPE_
STRUCT1

170 DSE_DB_OBSOLETE-FORWARDLINK

171 DSE_OPEN_BINDERY: The Bindery has been opened. d1: Tree root ID.

172 DSE_CLOSE_BINDERY: The Bindery has been closed. d1: Tree root ID.

173 DSE_CHANGE_CONN_STATE: The connection state has changed. DSEChangeConnState
(page 51)

174 DSE_NEW_SCHEMA_EPOCH: A new schema epoch has been
declared.

d1: Tree root ID.

175 DSE_DB_AUDIT: An auditing debug message has been sent. DSEDebugInfo (page 54)

176 DSE_DB_AUDIT_NCP: An auditing NCP debug message has been
sent.

DSEDebugInfo (page 54)

177 DSE_DB_AUDIT_SKULK: An auditing debug message concerning
synchronization has been sent.

DSEDebugInfo (page 54)

178 DSE_MODIFY_RDN: A Modify RDN operation has been performed. d1: Parent ID.

d2: Entry ID.

uname: Old RDN.

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
179 DSE_DB_LDAP: An LDAP debug message has been sent. DSEDebugInfo (page 54)

180 DSE_ORPHAN_PARTITION: An orphan partition operation has been
performed. This operation has four variations: Create, Remove, Link,
and Unlink.

Create:

d1: DSE_OP_CREATE

d2: newPartitionID.

d3: targetPartitionID.

Remove:

d1: DSE_OP_REMOVE

d2: Partition ID.

Link:

d1: DSE_OP_LINK

d2: Partition ID.

d3: Target Partition ID.

d4: Target Server ID.

Unlink:

d1: DSE_OP_UNLINK

d2: Partition ID.

d3: Target Partition ID.

181 DSE_ENTRYID_SWAP: A Swap Entry ID operation has been
performed.

d1: Source ID.

d1: Destination ID.

182 DSE_NCP_REQUEST: An NCP request has been made. No data returned. Used
by Lock Check.

183 DSE_DB_LOST_ENTRY: A lost entry debug message has been sent.
A lost entry is an entry for which updates are being received, but no
entry exists on the local server.

DSEDebugInfo (page 54)

184 DSE_DB-CHANGE_CACHE: A change cache debug message has
been sent.

DSEDebugInfo (page 54)

185 DSE_LOW_LEVEL_SPLIT: A low-level partition split has been
performed.

d1: Parent partition Root
ID

Child partition root ID.

Outside lock.

186 DSE_DB_PURGE: A purge debug message has been sent. DSEDebugInfo (page 54)

187 DSE_END_NAMEBASE_TRANSACTION: An End Namebase
Transaction debug message has been sent.

DSEDebugInfo (page 54)

188 DSE_ALLOW_LOGIN: A user has been allowed to log in. d1: Entry ID.

d2: Flags-.

Event Type Data Returned
Values 95

96 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
The events described in the following table are primarily associated with WAN Traffic Manager.
They must be inline events so policy results can be returned to eDirectory. Those events with no
structure specified use the structure with the indicated parameters filled.

189 DSE_DB_CLIENT_BUFFERS: A client buffers debug message has
been sent.

DSEDebugInfo (page 54)

Event Type Structure Returned

190 DSE_DB_WANMAN: A WAN Traffic Manager debug message has
been sent.

DSEDebugInfo (page 54)

191 DSE_WTM_RESERVED_1: Reserved for internal use.

192 DSE_WTM_RESERVED_2: Reserved for internal use.

193 DSE_WTM_RESERVED_3: Reserved for internal use.

194 DSE_WTM_RESERVED_4: Reserved for internal use.

195 DSE_WTM_RESERVED_5: Reserved for internal use.

196 DSE_WTM_RESERVED_6: Reserved for internal use.

197 DSE_LOCAL_REPLICA_CHANGE: A replica on the local server has
been modified.

d1: opcode:

DSE_LRC_ADD
DSE_LRC_REMOVE
DSE_LRC_MODIFY

d2: replicaRootID

198 DSE_DB_DRL: A Distribute Reference Link (DRL) has been created. DSEDebugInfo (page 54)

199 DSE_MOVE_ENTRY_SOURCE: An entry has been moved from a
source server.

d1: Parent ID.

d2: Destination Parent
ID.

d3: Source ID.

uname: Name

200 DSE_MOVE_ENTRY_DEST: An entry has been moved to a
destination server.

d1: Parent ID.

d2: Destination Parent
ID.

d3: Source ID.

uname: New name

201 DSE_NOTIFY_REF_CHANGE: A Used By obituary has been added to
an object.

d1: Source ID being
referenced.

202 DSE_DB_ALLOC: A memory allocation debug message has been
generated.

DSEDebugInfo (page 54)

203 DSE_CONSOLE_OPERATION: A wire protocol verb has been invoked
for a console command.

d1: Operation Code:
DSC_

Event Type Data Returned
tory Event Services

novdocx (E
N

U
) 01 February 2006
The handler parameter is a pointer to a function that is to be called when the specified eDirectory
event occurs. The function is defined as follows:

type
(IN) Identifies the type of the event that has occurred. (See the type parameter above.

size
(IN) Specifies the size of the data that is returned for the event.

data
(IN) Points to the location of the data that contains information related to the event.

The data structures in the above table are defined in NWDSEVNT.H.

The value returned by the callback must be 0 for success and any other value for failure. If the
callback returns a nonzero value during a EP_INLINE priority event, the event will be aborted. The
callback’s return values for the EP_JOURNAL and EP_WORK priority events are ignored.

See Also

• Section 1.1, “eDirectory Event Introduction,” on page 11

204 DSE_DB_SERVER_PACKET: Not implemented. DSEDebugInfo (page 54)

205 DSE_START_DIB_CHECK : A RecMan DIB validation has started.

206 DSE_END_DIB_CHECK: A RecMan DIB validation has finished. d1: Error status

207 DSE_DB_OBIT: An obituary debug message has been generated. DSEDebugInfo (page 54)

208 DSE_REPLICA_IN_TRANSITION: DSEEventData (page 60)

d1: Partition Root ID

d2: Last ID

209 DSE_DB_SYNC_DETAIL: A synchronization detail debug message
has been generated.

DSEDebugInfo (page 54)

210 DSE_DB_CONN_TRACE: A connection trace debug message has
been generated.

DSEDebugInfo (page 54)

Event Type Structure Returned
Values 97

98 NDK: eDirec

novdocx (E
N

U
) 01 February 2006
tory Event Services

Revision History

A
novdocx (E

N
U

) 01 February 2006

99

ARevision History

The following table lists all changes made to the eDirectoryTM Event Services documentation:

March 1, 2006 Added a statement about callback threads to Section 1.3.6, “Priority 2,” on
page 18.

October 5, 2005 Transitioned to revised Novell documentation standards.

February 2003 Renamed the product name from “NDS” to “Novell eDirectory” at relevant
instances.

September 2002 Updated the classID parameter description DSEEntryInfo (page 56) struct to
state that DSE_CREATE_ENTRY events do not return this data.

July 1998 Added NDS 8 events.

	NDK: eDirectory Event Services
	About This Guide
	1 Concepts
	1.1 eDirectory Event Introduction
	1.2 eDirectory Event Functions
	1.2.1 eDirectory Event Registration Functions
	1.2.2 eDirectory Event Helper Functions
	1.2.3 eDirectory Event Handling
	1.2.4 eDirectory Event Slot Table

	1.3 eDirectory Event Priorities
	1.3.1 EP_INLINE
	1.3.2 EP_JOURNAL
	1.3.3 EP_WORK
	1.3.4 Priority 0
	1.3.5 Priority 1
	1.3.6 Priority 2

	1.4 eDirectory Event Data Filtering
	1.4.1 Filtering eDirectory Events by Local ID
	1.4.2 Filtering eDirectory Events by DSTrace Events

	1.5 eDirectory Event Types
	1.6 Global Network Monitoring

	2 Tasks
	2.1 Monitoring eDirectory Events
	2.2 Registering for eDirectory Events
	2.3 Unregistering for eDirectory Events

	3 Functions
	NWDSEConvertEntryName
	NWDSEGetLocalAttrID
	NWDSEGetLocalAttrName
	NWDSEGetLocalClassID
	NWDSEGetLocalClassName
	NWDSEGetLocalEntryID
	NWDSEGetLocalEntryName
	NWDSERegisterForEvent
	NWDSERegisterForEventWithResult
	NWDSEUnRegisterForEvent

	4 Structures
	DSEACL
	DSEBackLink
	DSEBinderyObjectInfo
	DSEBitString
	DSEChangeConnState
	DSECIList
	DSEDebugInfo
	DSEEmailAddress
	DSEEntryInfo
	DSEEntryInfo2
	DSEEventData
	DSEFaxNumber
	DSEHold
	DSEModuleState
	DSENetAddress
	DSEOctetList
	DSEPath
	DSEReplicaPointer
	DSESEVInfo
	DSETimeStamp
	DSETraceInfo
	DSETypedName
	DSEVALData
	DSEValueInfo

	5 Values
	5.1 Event Priorities
	5.2 Event Types

	A Revision History

